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Pr'eface

The purpose of this study was to determine if artificial networks could be used to characterize

radar signals from sampled feature data of their electromagnetic signals. Ilyperplane Classifiers,

trained via backpropagation to optimize the Mean Square Error, Cross Entropy and Classification

Figure of Merit objective functions, were first analyzed and tested. Kernel Classifiers, using radial

basis functions as the kernel functions, were then analyzed mathematically and tested under var-

ious training algorithms. Finally, the Probability Neural Networks were analyzed and tested for

comparison with the llyperplane Classifier and Kernel Classifier networl:s.

The amount of work accomplished could not have been done wi -. out thc. aid of my thesis

committee, Dr. M. Kabrisky, Dr. B. Sutter, and Dr. V. Pyatti. I am -specially indebted to my

thesis advisor Maj S. Rogers for his direction and support during this pr ject. Also. ' '.hank Capt

Eddy and Anthony Schooler for their help with the SUN Workstations awd LA.' . 'X. Finally, I

would like to thank my wife Annette for the sacrifices she made in order that this mi.estone in our

lives could be completed.

Daniel R. Zahirniak
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Abstract

Recent work concermng artificial neural- networks has focused on decreasing network training

times. Kernel Classifier networks, using radial basis functions (RBFs) as the kernel function, can

be trained quickly with little performlance degradation. Short training times are critical for systems

which must adapt to changing environments.

The function of Kernel Classifier hetworks is based on the principle that multivariate functions

can be approximated via linear- combinations of RBFs. RBFs can also perform probability density

estimations, making classifications aplroximating a Baye's optimal descriminant.

Methods used to set the RBF cenfers included matching the training data, Kohonen Training,

K-Mea'hsb.Clustering and placement at averages of data clusters of the same class.

Test results indicate the performance of these networks was equal to that ofltyperplane Clas-

sifier networks trained, via backpropagation, to optimize the Mean Square Error, Cross Entropy,

and Classification Figure of Merit objecCive functions. However, the RBF networks-trained much

faster. The RBF networks also outperformed the Probability Neural Networks,(PNN) indicating

the weights in the output -layer offset the choice of non-optimal spreads.

This ability to train quickly while obtaining high classification accuracies make RBF Ker-

nel Classifier networks an attractive option for systems which must adapt quickly to changing

environments.i

xiv



Characterization of Radar Signals Using Neural Networks

L Problem Description

1.1 Introduction

Due to the increasing proliferation of hostile- radar systems, the current radar warning de-

vices installed in many Air Force aircraft may have trouble meeting their real-time data processing

requirements in the near future. Since artificial neural networks are designed -to process data in a

distributed manner, they will able to process data much quicker than current computer systems

when the parallel distributed processing hardware becomes available. Thus, artificial neural net-

works may provide the key t'--olving the real-time data processing requirements of future radar

warning devices. This -thesis will characterize several types of artificial neural networks and de-

termine if any are suited to accurately characterize radar systems. This problem description will

begin by reviewing the background-of these radar warning devices. The exact-problem to be solved

will then be described. This description will be followed by a summary of the knowledge cur-

rently available concerning artificial- neural networks and a brief outline of the scope of the thesis.

The standards and approach taken-to solve the- problem will then be discussed. This chapter will

conclude with a brief overview of the remaining chapters.

1.2 Background

The main task required of a radar warning-system is to analyze the electromagnetic environ-

ment, determine if this environment contains a radar signal, classify the signal as being generated

from either a hostile or friendly radar system, and identify the exact type of radar system -trans-

mitting this signal or classify the signal as being from an unknown emitter. This analysis should be

accomplished even though the radar system has the ability to change the signal's electromagnetic

characteristics (19:42). Accomplishing this task requires the radar warning system to analyze the

environment quickly and accurately, classifying signal data according to known parameters. Even

with the use of high speed computers, this task is computationally intense- and can take several

seconds to properly-classify the radarbignal. Astlhe electromagnetic spectrum-becomes increasingly

crowded through the proliferation of hostile radar systems, it will take longer for the current radar

warning devices to accomplish their-mission. However, aircraft are required to operate in real-time,

responding to changes in this electromagnetic environment in-a matter of milliseconds. This has
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led to research in the use of artificial neural networks asa possible method of characterizing a radar

system from its transmitted signal.

1.3 Problem

This thesis will characterize several different types of artificial neural networks and determine

which would be able to classify radar systems from data concerning their electromagnetic signals.

An artificial neural network can be thought of as a massively parallel, interconnected system of

simple computing elements, called nodes, which can accomplish certain pattern classification tasks

quickly, in a way motivated by a biological nervous system. Since neural networks have been shown

to be equivalant to a Bayes' optimal discriminant (21) and capable of performing arbitrary complex

transformations (5), it seems logical to assume these networks will be able to characterize radar

systems.

1.4 Current Knowledre

/[ Basically, artificial neural networks may be categorized as either Probabilistic Classifiers,

Exemplar Classifiers, Hyperplane Classifiers, or Kernel Classifiers (11:47-63). A Probabilistic Clas-

sifier neural network seeks to classify patterns by using probability distributions to maximize the

probabilities associated with a classification. As such, these networks require an assumption of the

.probability- distribution of the input data (9:1-7). An Exemplar Classifier neural network classifies

unknown feature data based on a nearest-neighbor calculation with the training data. That is, the

closer an unknown data point is to a known data point in the feature space, the stronger the prob-

ability-that the two features represent the same object (8:167-170). A Hyperplane Classifier neural

network forms decision regions by using hyperplaues to partition the feature space into regions of

interest. This partitioning allows the network to make classifications of similar data (19:48-63).

A Kernel Classifier neural network uses overlapping kernel function nodes to create complex deci-

sion regions over-the- feature space. These decision regions will determine the classification of each

pattern-as similar patterns will be identified within the decision regions (11:49).

Usually, these artificial neural networks are developed using unsupervised training, supervised

training, or a combination of supervised and unsupervised training. In unsupervised training, the

feature-data from -the -environment are-input to the-network. The-nodes in the network are then

allowed to arrange their parameters, or cluster, in positions reflecting the distribution of the data

(22:151-193). In supervised training, the feature data, in the form of a pattern vector, is presented

to-the network along with the desired output pattern for that particular input pattern vector. The

1-2



difference, or error, between the network output and the desired output is then calculated and used

to adjust the network parameters in such a way that the error is minimized. A combination of

unsupervised and supervised training can also be used to develop an artificial neural network. In

this type of training, the network is first trained using unsupervised training to allow the network

parameters to be distributed according to the feature data. After stabilization, the network is then

trained, in a supervised fashion, to produce the correct classification for a given input pattern.

1.5 Scope

The final product of this thesis will be a characterization of the Hyperplane and Kernel

Classifier neural networks and a determination if they can accurately characterize radar signals.

The Probabilistic Classifier will be briefly studied for comparison purposes. The Exemplar Classifier

will not be studied as the computational time required to make a classification would exceed the

real-time data processing requirements of the aircraft. The Hyperplane Classifier networks will

consist of a double hidden layer network, as shown in figure 1.1. This network will be trained,

Input Hidden Hidden Output
Layer Layer Layer Layer

A Weights I - .. ,-

Identity Sigmoidal
Function Function

Figure 1.1. Double Hidden Layer Hyperplane Classifier Network

via backpropagation, to optimize the Mean Squared Error, (MSE), the Cross Entropy (CE) and

the Classification Figure of Merit (CFM) objective functions (28). The transfer function for each

network node will be sigmoidal. The Kernel Classifier will be a single hidden layer network, as

shown in figure 1.2, developed using the combined training method with radial basis functions as
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Figure 1.2. Single Hidden- Layer Kernel Classifier Network

kernel functions. The transfer function for each of the kernel nodes in the hidden layer will be

gaussian. The transfer function for the nodes in the output layer will be linear.

Several methods will be used to determine the weights linking the network's hidden layer

nodes to the input layer nodes. The first method -will set the weights at values equal to the features

of the training set patterns. The second method will set the weights via the Kohonen training

algorithm. The third method will set the weights-via a K-means clustering algorithm. The fourth

method will set the weights at the average- of -clusters within the pattern classes. The weights

linking the kernel nodes in the hidden -layer with- the nodes -in the output layer will be established

by a global minimization of the MSE function.

1.6 Standards

The performance criteria for each network will be the classification accuracy and the amount

of time it takes to train the network. Classification accuracy is the more important of the two

performance criteria since near perfect classification accuracy is a mission requirement. The amount

of time it takes to train the network is important since it is highly likely that the threats in the

environment can change from mission to mission. Short training times can be crucial to building

networks to adapt to this changing environment. The accuracy of each trained network will be

calculated by applying test data to the network, and allowing the network to make a classification.
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An error will result when the network's classification does not match the known classification. The

accuracy will then be calculated as the ratio of the number of correct classifications to the number

of input patterns.

1.7 Approach

As part of this thesis, a software environment will be developed on the SUN graphic work-

stations. This software will be written in ANSI C and designed according to an object-oriented

approach. The software will allow the user to select the number of layers for the neural network

and to select the training rule for each layer. In this manner, different combinations of training

rules can be combined and their overall performance evaluated. Furthermore, this software will

allow the user to select either the sigmoidal, gaussian or linear transfer functions for each node in

the network. This will allow construction of many different types of networks even though- their

topology may be the same. Since the main task of this thesis is in pattern recognition, this software

will implement only strict feed forward networks. However, the software will be designed to-allow

future expansion to recurrent and lateral inhibition networks.

1.8 Chapter Outlines

The following is a brief discussion of the information .o be found in each of the chapters of

the thesis.

1.8.1 Chapter 2 This chapter will provide a review pattern recognition in general followed

by a brief synopsis of biological and artificial neural networks. This chapter will then conclude with

a history of the development of artificial neural networks, a description of the training methods

used to implement these networks and a discussion of the different classifications of artificial neural

networks.

1.8.2 Chapter 8 This chapter will provide a mathematical analysis of the algorithms to be

used to train the neural networks implemented as part of-this thesis. In particular the backprop-

agation learning algorithms for the MSE, CE and CFM objective functionsiwill be derived for the

perceptron-based Iyperplane Classifier networks. The algorithms developed for the radial basis

function Kernel Classifier networks will concentrate on first setting the weights of the hidden -layer

nodes prior to establishing the weights in the output layer nodes via a global minimization of the

MSE objective function.
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1.8.3 Chapter 4 This chapter will provide a detail, . analysis of the software developed for

this thesis. This will include a discussion of the software structure and a mapping of.-the algorithms

developed in Chapter 3.

1.8.4 Chapter 5 This chapter will discuss the testing and results for each of the networks

implemented with the software described in Chapter 4. This will include an overview of the classi-

fication problem, a discussion of the data used- to train and test the network and an analysis of the

results.

1.8.5 Chapter 6 This chapter will provide conclusions based on the results detailed in Chap-

ter 5 and include recommendations for areas of future study.

1.9 Summary

This thesis will characterize the performance of several artificial neural networks and deter-

mine if the networks can be trained to accurately classify radar systems from data concerning their

electromagnetic signals. For this thesis, Hyperplane Classifier, Kernel Classifier, and Probabilistic

Classifier networks will be developed and tested to analyze their performance. The results -of this

thesis will provide a determination of the feasibility of using artificial neural networks as the basis

for the Air Force's next generation of radar warning devices.
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II. Literature Review

2.1 Introduction

Current computer systems may not be able to process data fast enough to meet the future

real-time performance requirements of many military weapons systems. Since artificial neural

networks are designed to process data in a distributed manner, they may provide the key to solving

these data processing requirements. This literature review begins with the background associated

with the military's strict data processing requirements followed by a brief review of the concepts of

pattern recognition. Research showing how the brain may use biological neural networks to process

information is then examined. After describing artificial neural networks in general, this review will

cover some of-the important milestones in the development of artificial neural networks. Finally,

this literature review will describe the current methods used to train these networks and discuss

how artificial neural networks are now -being categorized according to their -methods of classifying

data.

2.2 Background

A task required of many military weapon systems is to analyze the environment and- deter-

mine, in a matter of milliseconds, whether a target of interest is- present. Solving this problem of

pattern recognition usually -requires the weapon system to combine the data from a multitude of

sensors, segment the data into areas of interest, extract the important features, and classify these

features according -to known threat patterns (20:1-12). Currently, these pattern recognition tasks

are accomplished using the -traditional Von Neumann computers. These computers consist of a

Central Processing Unit which performs complex sequential computations, one at a time, under

control of a system clock (6:2). Even with the use of high speed computers, this task of pattern

recognition is usually so computationally intense that it may take hours to-properly classify the

pattern (26:7). These time frames are unacceptable for weapon- systems operating in real time.

The only object capable of performing this type of analysis in real-time is the human brain. Thus,

a computing architecture, based upon the way the brain is assumed to function, may be able to

solve these pattern recognition proalems in the time frames required (26:7). These computing

architectures, commonly known as artificial neural networks, perform computations in a manner

significantly different-than4raditional computers. For-instance, anrartificial neural network=procems-

ing unit may do only one type of simple calculation, such as producing a single output from a simple

transformation of its inputs. However,- since there may be thousands of these simple processing

units, each interconnected to many others, extremely complex computations can be accomplished,
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in parallel, via the network as a whole. This parallel processing of data allows the artificial neural

network to process data extremely quickly and may provide the key to rapidly classifying patterns

from their distinct environmental features.

2.8 Pattern Recognition

Recognition of patterns is a basic characteristic of many living organisms, including human

beings (27:5). The fact that a human being is a very sophisticated information processing system is

primarily due to the fact that human beings possess a superior pattern recognition capability (27:5).

That is, even though our senses are constantly flooded with an overwhelming variety of patterns

from the environment, we still have the ability to determine what information is most important and

react accordingly. It is this characteristic of discriminating unknown patterns between populations

that a pattern recognition system seeks to emulate.

2.4 Pattern Recognition Systems

Basically, all pattern recognition systems seek to categorize the input data into. identifiable

classes via the extraction of significant features from a background of irrelevant detail (27:6). Thus,

the tasks- of a pattern recognition system -are- to sense the environment, provide data concerning

patterns of possible interest, extract relevant features from this data, and classify the pattern as a

member of one of the groups under consideration. These tasks are shown in the block diagram of

figure 2.1.

2.4.1 Sensing The first task of a pattern recognition system is to represent the pattern

under study as a group, or vector, of measurements. This process, known as-sensing, attempts

to describe the characteristics of the pattern under study and represent the pertinent information

available about the pattern (27:9). For-example, if the task was to recognize, or classify a radar

signal, the -measurements of the pulse repetition interval, scan rate and operating frequency might

be taken.

2.4.2 Feature Selection The second task of a pattern recognition system is to take the

measured data obtained under sensing and extract the intraset and interset features, or attributes,

which--will- enable- the- system -to- perform- classification. This step is- perhaps -the -most critical as

good features make for good classification systems (19:47). However, at this time, there is no strict

set of rules-available to determine which features actually characterize a class. Too few or poorly
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Figure 2.1. Block Diagram of a Pattern Recognition System (27:16)

chosen features will not allow the system to characterize the input patterns sufficiently to allow

categorization (27:7).

2.4.3 Categorization The third task of a pattern recognition system is to classify, or cate-

gorize, the input pattern as belonging to one of a set of possible classes. In this step, the features

extracted from the unknown pattern are analyzed and used to decide from which class the unknown

-pattern is mostly likely to be a-member. This categorization is-usually based upon some decision

function such as Bayes' optimal discriminant.

Currently, most of these pattern recognition tasks are accomplished -via a variety of classical

statistical methods such as template matching, frequency histogram associations, and probability

density estimations. These methods can require much contextual analysis of the -data prior to

classification. However, artificial neural networks can be constructed as pattern recognition systems,

-adapting their internal parameters according to a set or predefined rules, without -the need for

intensive human analysis of the data. To understand how this process may occur requires an

understanding of biological neural networks.
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2.5 Biological Neural Networks

Biologically speaking, a neuron, as shown in figure 2.2, is a nerve cell which is used to process,

store, retrieve and manipulate information received from the environment (26:9). This neuron is

Dendrites

wall0

.. Te inal Feet

Figure 2.2. The Neuron (19:19)

a cell- that has been modified to become a simple processing element whose primary function is

to receive, process and transmit electrochemical signals across the brain's neural pathways (29:12)

(19:17). The main modifications are the addition of dendrite and axon appendages to the cell

body. The dendrites act as the input- communication channels while the axon acts as the output

channel. Each neuron is connected to the axon of many other neurons via its dendrites. These

dendrite extensions allow a neuron to receive chemical neurotransmissions from other neurons at

junctions called synapses (29:12). When the neuron receives these signals, it will become excited if

the combined input signals exceed a threshold. When excited, the neuron will transmit an electrical

signal-along its axon, sending the signal to each attached neuron. The attached neurons may or

may not-become excited, depending on the strength of the-connection between the neurons. Thus,

it is in the synapse -that the information is stored- in- the form of synaptic weights. Since there are

between 1010 - l011 neurons in the-human brain-and an estimated 1015 interconnections between

these -neurons, a vast amount of information can be stored and quickly processed (29:12).
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2.6 Artificial Neural Networks

As a pattern recognition device, artificial neural networks attempt to assign an unknown

pattern -from the environment into one -of a set of selected classes by emulating this structure of

the neurons in the human brain (11:47). These networks can be thought of as massively parallel,

interconnected networks of simple computing elements, called nodes, which seek to interact with

the real world in way similar to a biological nervous system (10:251). As shown in figure 2.3, each

node in the network performs a simple transformation of-inputs from other nodes in the network,

or from -the environment, to produce a single output signal. This transformation can be via a

Node Outputs
Y1 Threshold

W1 a

I Weights

II

a,= wiyi + a

Figure 2.3. Artificial Neural Network Node (19:48)

linear function or a nonlinear function such as sigmoidal, gaussian, or threshold function. The

signal output from this transformation is then fed to other nodes or interpreted as the -output of

the network.

The connections, or weights between the nodes, function in a manner similar to the axon-

dendrite synaptic connection of biological neurons. That is, each weight has a "strength" associated

with it which serves to either amplify or-inhibit the signals transmitted between nodes along these

connections. Typically, an artificial neural network will- consist of one- or more layers of-nodes as

shown in figure 2.4. The first layer of nodes serve to simply pass the input features, via-weighted

interconnections, to feature detector nodes in the second- layer. These feature detector -nodes will

usually respond to certain features of the input data. Their responses are then passed, via another
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Figure 2.4. Multilayer Artificial Neural Network (6:75)

set of weighted interconnections, to the output layer which performs the classification task based on

the outputs of the feature detectors. Through the proper interconnection of nodes and weights, and

through the use of an appropriate transfer function, artificial neural networks have-been developed

which can accurately classify patterns ranging from phonemes to tanks (23:461-466) (20:1-7).

2.7 Historical Review

Biological neural networks have been studied for years. Ever since -the 18th century, when

Galvani investigated the connecticn between electricity and the frog's central nervous system, man-

has been seeking to unlock the secrets of the brain's computing power (19:5). From Santiago Cajal's

discovery of the dense interconnection of neurons in the cortex to the first estimation of a neuron's

transfer function via experiments with the Limulus' photoreceptors, man has been seeking a method

of modeling the function of the brain in the form of artificial neural networks (19:6-31).

The first major milestone in the development of artificial neural networks came in 1943

from McCulloch and Pitts. They showed how neural-like networks, using a simple two state logical

decision element which modeled the first order characteristics of a neuron, could compute a Boolean

function- (19:9). Since Turing later showed that any computable function could be computed with

Boolean Logic, the basis for the development of computing machines, based on the principle of
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using a dense connetction of simple neural like elements, was established. However, McCulloch and

Pitts did not show how a network-made of these elements could be made to "learn" (22:152).

This problem of learning was addressed by Donald Hebb in 1949. Basically, Hebb proposed

that the strength or weight between two neurons be increased whenever both the presynaptic and

postsynaptic units were active simultaneously. These ideas remained untested due to the lack of

technology capable of implementing these theories. (22:152-153).

M. Minsky and D. Edmonds were the first to actively implement Hebb's ideas in the-form

of a learning/computational machine developed in 1951. This- machine was composed of tubes,

motors and electrical clutches. The machine's memory was stored in the positions of control knobs

by which the machine adjusted itself (22:153).

This milestone was followed by Rosenblatt's introduction of the perceptron in 1957. Basically,

the perceptron is a single unit which produces an output -only when the weighted sum of its inputs

exceeds some preset threshold. The function of the perceptron was-modeled- on the first order

characteristics of neurons. Using Hebb's ideas as a basis for developing his learning algorithms,

Rosenblatt proved that the perceptron could learn anything it could represent (29:29). Rosenblatt

also helped pioneer the simulation of the perceptron using digital computers and developed a

set- of rules -that would allow the perceptron to learn (19:13). In reference to pattern recognition,

Rosenblatt showed that a two layer perceptron could carry out any of the 2 2 N possible classifications

of N binary inputs using 2 N perceptrons (22:158).

In 1959, Bernard Widrow invented the adaptive linear neuron (ADALINE) which, in-a manner

similar to Rosenblatt's perceptron, would output a signal only when the weighted sum of its inputs

exceeded a-preset threshold. The weight parameters of the ADALINE were adjusted over time using

equations based on Hebb's original ideas (6:31). Widrow implemented ADALINE based systems

that could predict the weather and balance a broom on a moving platform (19:12).

These developments led-to an increased- level of activity in the field of artificial neural-networks

until 1969. It was in- this year-that Minsky and Papert proved that the single layer perceptron could

not classify patterns with features in disjoint regions in-the feature space. An example-of such a

pattern is shown in figure 2.5. At this time, -no method of updating the weights for any nodes except

those weights attached to the output layer -nodes for a multilayer, perceptron had been established

(6:29). Thus, all perceptron based networks at-this time- were limited= to-~a single input layer and-

output layer with only one set of adjustable weights. Minsky's and Pappert's proof helped stifle

neural network research until the middle 1970's.
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Figure 2.5. Disjoint Regions for Similar Classes (6:30)

Interest in artificial neural networks was rekindled in 1974. It was at this time that Paul

Werbos introduced a method of updating the weights in the hidden layers of a multilayer perceptron

network. These equations allow the multilayer perceptron- to overcome the disjoint region problem

suffered by the single layer perceptron network.

However, little work continued to-be done in-the field until 1982 when John Hopfield devel-

oped an artificial neural network capable of providing-associative memory and solving optimization

problems (6:37). This development led-to increased activity in the field of artificial neural networks

and the development of many different types of training rules and architectures.

2.8 Network Training

Artificial neural networks are not programmed, as are traditional computers, and there is

little need for the development of application specific algorithms to perform the classification task.

Artificial neural networks learn by example (6:11). In pattern recognition tasks, artificial neural

networks are usually trained to produce a desired-output whenever -a known input is applied. This

training is accomplished by applying input patterns to the network and allowing the network nodes

to adjust their parameters in a predetermined fashion (29:22). That is, the artificial neural network

is presented with data which characterize such-patterns as images, speech signals and radar signals.
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These networks are then allowed to adjust their internal parameters, such as weights, to allow the

network to discover the distinguishing features heeded to perform a classification task (6:13).

Basically, there are -three primary methods of developing or training artificial neural net-

works. These methods consist of unsupervised training, supervised training, or combined training,

a combination of supervised and unsupervised training.

2.8.1 Unsupervised Training In unsupervised training, the feature data from the environ-

ment are fed to the network. The interconnection weights between the nodes in the network are

then arranged, or clustered, into positions reflecting the distribution of the training data (22:151-

193). After training is completed, application of an input from a given class will produce a specific

output. However, there is no way, before training, to predetermine the mapping from input to out-

put. A Kohonen Self-Organizing feature map network, trained in this manner, has proven feasible

for classifying speech patterns (1:1-7).

2.8.2 Supervised Training In supervised training, the feature data is presented to the net-

work, along with the desired output pattern for that particular input pattern. The difference

between the network output and the desired output, or error, is then calculated and used to adjust

the network parameters, such as the weights linking the nodes, so that this error is minimized. This

process is repeated continuously until the network is able to produce the mapping from the input

pattern to the desired output pattern. A multi-layer perceptron network, developed with super-

vised training at the Air Force Institute of Technology, has proven capable of classifying tactical

targets such'as trucks, tanks, and jeeps (20).

2.8.3 Combined Training A combination of unsupervised and supervised training can also

be used to develop an artificial neural network. In this type of network, the first layer is usually

trained through unsupervised training, allowing the network parameters to be distributed according

to the feature data. After stabilization of the first layer, the remaining nodes are then trained in a

supervised fashion, to produce a desired signal from knowledge of the distribution of the network

parameters in the first layer. A network trained in this manner has been studied by the Royal

Naval Engineering College as a possible method of classifying radar signals (2:1-4).

2.9 Network Categorization

According to Lippmann, neural networks may be categorized as either a Probabilistic Clas-

sifier, an Exemplar Classifier, a Hyperplane Classifier, or a Kernel Classifier, depending upon the
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method the network uses to perform classification (11:47-63).

2.9.1 Probabilistic Classifiers A Probabilistic Classifier neural network seeks to classify pat-

terns by using probability distributions to maximize the probabilities associated with a classification

as shown in figure 2.6. As such, these networks require enough training data to allow an assump-

X X
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xX X X

* } X X

* , X X

Exemplars

Decision Line

Figure 2.6. Probabilistic Network -Decision Regions (11:49)

tion of the probability distributions of the patterns to be made. Either unsupervised or supervised

training is then used to train the network. These networks -perform best when the assumed dis-

tributions are accurate models of the test data. An-example-of this type of classifier is the Bayes'

Classifier or the Probabilistic Neural Network (9:1-7)-(24).

2.9.2 Exemplar Classifiers An Exemplar Classifier neural network classifies unknown fea-

ture data based on a nearest-neighbor calculation with the training data fixed in the feature space

as shown in figure 2.7. These nearest-neighbor calculations allow an estimation of the conditional

probability density functions for each class (8:166-169). That is, the closei -n unknown pattern is

to a known pattern, the stronger the probability that the two patterns represent the same class

(10:3). An example of this type of network is the K-Nearest-Neighbor classifier. Networks of this

type can be trained rather quickly through either supervised or -unsupervised methods, but can

require large amounts of memory and long computational times-for classification (11:49).
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2.9.3 Hyperplane Classifiers A Hyperplane Classifier neural-network forms decision regions

by using hyperplanes to-partition the feature space into the regions of interest as shown -in figure

2.8. Perhaps one of the more studied networks- of this type is the multilayer perceptron network

(19:44-63). The function of this network is based on the property -that any multivariate-function

can be approximated by a finite superposition -of sigmoidal functions (5:303-313). This property

can be implemented with a single hidden layer-neural network, where each node within the network

uses a sigmoidal function to calculate its output from the sum of the product of its inputs and their

associated weights. This net.work is usually trained under the supervised training method, -using a

-technique called backproj!agation, to minimize the error between a given input and a desired output

(19:104-114). However, the amount of time required to train these networks can take hours (23:466)

(14:4). Once trained, these networks usually provide high accuracy for pattern classification while

-requiring relatively short computational times (11:49).

2.9.4 Kernel Classifiers A Kernel Classifier neural network uses overlapping kernel func-

tions to create complex receptive-field decision regions over the feature space as shown -in figure

2.9. One of the more recent types of Kernel function classifiers is the radial basis function clas-

sifier. The function of this network is based-on the property that any multivariate function can

be -reasonably approximated using a linear combination of radial basis functions centered on the

data points, or a subset of the data points (17:143-167) (15:1-20) (16:978-980). This translates
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into-the establishment of a single hidden layer network, with the nodes in the hidden layer using

radial basis functions to transfe:m their inputs to outputs. These networks have been successfully

trained to classify phoneme data for speech processing- (23:461-466) (18:437-439) (14:1-14). The

most appealing characteristic of the radial basis function Kernel Classifier networks is the almost

instantaneous training times involved with setting the network parameters (23:461-466) (18:432-

439). These networks can also be made to adapt to new data by adding additional nodes as required

(12:3). Generally, Kernel Classifiers can be trained relatively quickly through either supervised or

unsupervised methods and have intermediate memory and computational requirements (11:49).

2.10 Summary

Artificial neural networks, may provide military weapon systems with the ability to accurately

characterize their operating environment in real time. These networks seek to emulate the function

of the brain; using a dense connection of simple computational elements called nodes to perform

pattern classification. These networks can be trained in either a supervised or unsupervised fashion,

or both, and can be categorized by the method used to classify the data.
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III. Mathematical Analysis

3.1 Introduction

The main function of a pattern recognition system is to make a decision as to which class an

unknown pattern belongs (27:39). This decision is usually based upon the application of decision

functions which segment the feature space. Hyperplane Classifiers-use linear decision functions, in

the form of hyperplanes, to partition the feature space while Kernel Classifiers use higher order de-

cision functions, in the-form of hyperspheres or hyperellipsoids, to partition the feature space. This

chapter begins with a discussion of Hyperplane Classifiers, including an analysis of the objective

functions used to implement these classifiers as neural networks and their parameter update equa-

tions. After discussing Kernel Classifiers in general, the relationship between pattern recognition,

functional interpolation and probability estimation are examined. This chapter concludes with the

development of the training algorithms used- to implement Kernel Classifiers as neural networks.

3.2 Hyperplane Classifiers

3.2.1 Decision Functions Consider the two-dimensional exemplars representing two pattern

classes shown in figure 3.1. As can be seen, the two patterns can be separated by a line drawn in

XClass A
Cl a d(t) Exemplars

Exemplars / X X
X

* ** *xx
* " * ,* X '

* X* * ,

* \ Linear
, , * Descriminating\ Function

Figure 3.1. Linear Decision Function(27:40)

the feature space. The general equation for this line is
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d(Z) = wX1x + w2z 2 + 0' (3.1)

Here

d(t) is the linear decision function

tD is a vector containing the weights or scaling coefficients

is the pattern vector containing the feature values

o is an offset or threshold

From this figure, d(i) can be positioned such that any pattern ,ector, 2. belonging to class A will

yield a positive quantity when the features are substituted into d(i) while any pattern belonging

to class B will yield a negative quantity (27:39). Thus, d(X), ;an be considered a linear decision

function since, given an unknown pattern t, d(x) will be positive for class A and negative for class

B. When -the feature space has K dimensions, the general equation for the -linear &cision function

is of the form

d(i) = w1 1 + w2X2 + ... WKXK + o* (3.2)

The -main problem associated with -the linear decision function is -to find a set of weights

associated with the decision function which allows the feature space to be partitioned in a manner

which separates the classes (27:48).

3.2.2 Network Implementation The characteristics of the linear decision functions can be

modeled as a neural-type element by assigning, to the neural element, the -hyper-sigmoidal transfer

function

y(i) =[1 + e-O(")] " 1  (3.3)

where

K(X:) = 'E xk wk + a (3.4)

k=1

This nonlinear function, as shown in figure 3.2, is a nondecreasing function in which the output

for €( ) < 0 is less than 1/2 while for 0(i) > 0 the output is greater than 1/2. This model
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is based on the Rosenblatt's perceptron introduced in 1957. Again, as with the linear decision

function described above, the main problem associated with the perceptron--is to set the weights,

w,,, and offset, o, such that the feature space is partitioned to allow proper classification (19:50).

These parameters can be established by performing a gradient descent using-a method known as

backpropagation.

3.2.3 Network Training The training method most commonly used- with this perceptron-

based Hyperplane Classifier is the method-of backpropagation. In this method, the network is

presented a pattern vector -and allowed to produce its own output. This output is then compared

with the desired output using some predefined objective function. If there=is no major difference,

then no learning takes place. Otherwise the weights and offsets for each node-are changed in a man-

ner which optimizes the classification objective function (22:322). This optimization is performed

via an incremental gradient descent on the surface of the weight space whose -height at any point is

equal to a-measure of the performance of the classification- objective function (22:322). The-three

main types of classification objective functions are Mean Square Error (MSE), Cross Entropy (CE)

and Classification Figure of Merit (CFM) (28:217).

3.2.3.1 Mean Square Error (MSE) Objective Function The Mean Square Error (MSE)

objective function seeks to minimize the mean squared error between the network's actual output

and the desired output for each classification node in the output layer (28:217). Suppose a particular

pattern recognition problem- had N classes and the network -was developed such that each node in
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the output layer represented only one of the N classes. Let d, be the desired output for the nth

node for a given input pattern. The MSE then is defined as

MSE N (3.5)
Nn=1

Usually during training, dn is taken to be 1 for the node responsible for a class and the 0 for

the rest of the output nodes. This objective function was the first to be implemented in the

study of artificial neural networks and is the most widely used of the three objective functions.

Any network trained using this objective function will make a classification based on the Bayes'

optimal descriminant (21). However, there are certain properties of this function which don't

permit accurate classifications in all cases (3). As shown in Appendix A, there are certain areas in

the feature-space in which the mean square error is higher for a correct classification than for an

incorrect classification (28:218). This implies there are certain areas of the feature space in which

backpropagation according to the MSE function may fail to separate the classes correctly.

A network implemented using the MSE objective function will have its parameters set to

minimize the MSE. Thus, the general update equation for the network's parameters will have the

following form:

,OMSE,

u4 = 7 SE) (3.6)

Here, q is a constant which controls the update rate. The incremental update equations for each

of the parameters of the network shown in figure 3.3 are derived in Appendix B and summarized

below. The update equation for a weight linking node M in layer 2 to a node N in layer 3, WMN, is

MN WMrN - (YN - dN)YN(1 - YN)YM (3.7)

while the update rule for the offset of the node N, owN, in layer 3 is

_ o - 27(YN - dN)yN(1 - YN) (3.8)

The update equation for a weight linking nodc L ini-aycr Ito node=M in layer 2, wLA!, is

N

tM - LM- (yn - d.)y.(1 - yn)wMnlyM(1 - YM)yL (3.9)
n3-
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Figure 3.3. Two Hidden Layer Sigmoidal Network Topology

while the update equation for the offset of node M in layer 2, orM, is

N
I+ = 0.- - qZ(y. - d.)y.(1 - y.)wM.yM(1 - yM) (3.10)

ni=1

The update equation for a weight linking node K in layer 0 to node L in layer 1, WKL, is

N M

WKL = WiL - 17 >(yn - d)y-(1 - Y)[E W..y.(1 - Ym)WL.YL(1 - YL)YK] (3.11)
n=1 M=1

while the update equation for the offset of node L in layer 1, UL, is

N M
17+ =- o- '71 E(y. - dn)y.(1 - Y.)[E Wmnym(1 - Ym)WLmYL(l - YL)] (3.12)

n=I m=1

3.2.3.2 Cross Entropy (CE) Function The Cross Entropy (CE) Function considers

the -actual valuc-of an- output node as the probability that the ideal binary output state of the

node is a 1. The CE function seeks to minimize the difference between the actual output , yn, and

the ideal output, d,,, by minimizing the cross entropy between the actual and desired probability

density functions driving the output nodes (28:217). That is
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SN

CE= - N >[ d. log(y.) + (1 - d,) log(1 - y,)] (3.13)
n=l

Again during training, d,, is usually set-to 1 for the node responsible for the correct class and

to 0 for the rest of the outputnodes. As shown in Appendix A, the CE function is also characterized

by some areas in the feature space in which the CE is greater for an correct classification than for

an incorrect classification (28:218). This implies there are certain areas of the feature space in

which backpropagation according to the CE function may fail to separate the classes- correctly.

A network implemented -to use the CE function as the classification objective function will

have its parameters set to minimize the CE. Thus, the general update equation for the network's

parameters will have the following form:

Wt= W7- 778CE~ (3.14)

Here, 7 is a constant which controls the learning rate. The incremental update equations for each

of the parameters of the network shown in figure 3.3 are derived in Appendix B and summarized

below. The update equation for a weight linking node M in layer 2 to a node N in layer 3, WMN, is

WMN = W N + 17(dN - YN)YM (3.15)

while the update rule for the offset of-the node N, o'N, in-layer 3 is

&+ = c + n(dN - YN) (3.16)

The-the update equation for a weight linking-node L in layer 1 to node M in layer 2, WLM, is

N

u{~1= LM+?1(dn - Vn)wMnYM (I - UM)YL (.7
n=1

while the update-equation for the offset of node M in layer 2, aM, is

N

am am 77 E(dn- Yn)wMnyM( - yM) (3.18)
n=1

The update equation for a weight link;ng node K in layer 0 to node L in layer 1, WKL, is
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N M

WKL = WKL + 77-(d. - y)[- Wtmnym(l - y.)wLrnyL(l - yL)YK] (3.19)
n= m-=1

while the update equation for the offset of node L in layer 1, OL, is

N M

at = aZ + 1iZ(d. - y.)[Z WmnYm(1 - Ym)WLmYL(l - YL)] (3.20)
n-_l m=1

3.2.3.3 Classification Figure of Merit (CFM) Objective Function The Classification

Figure of Merit (CFM) objective function was introduced by Waibel to minimize the classification

errors due to the characteristics of the MSE and CE objective functions (28). This CFM function

does not consider the notion of an ideal output during training. This function is merely concerned

with forcing the correct node to be the maximum output node for the correct input -features. The

CFM objective -function first compares the activation level of each of the output -nodes to the

output node which should have the highest activation. The CFM then applies a sigmoidal function

to differences between the activation levels for each of the nodes as follows:

1 N
CFM = E c[1+ - 6-+]1 (3.21)

where 6,, = Yc - y,,

yc = response of the correct node

y = response of the incorrect node

N = total number of output nodes or classes.

a = sigmoid scaling parameter.

sigmoid discontinuity parameter.

= sigmoid lateral shift parameter.

The application of the sigmoidal function keeps the network from trying to produce ideal values

as the CFM function yields decreasingly marginal updates for increasingly ideal output patterns.

Also, in order to keep the network from attempting to learn extreme statistical outliers of a class,

the CFM seeks to apply decreasing marginal penalties for increasingly bad misclassifications (28).

As shown in Appendix A, these -characteristics may allow the CFM objective function to- reduce

the areas within the feature-space in which the CFM is higher for an incorrect response than for a

correct response.
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A network implemented using the CFM objective function will have its parameters set such

that the CFM objective function is maximized. Thus, the general form for the update equation of

any parameter wj of the network will be

t = W + 8 -CFM) (3.22)

Again, q is a constant which controls the learning rate. The incremental update equations for the

parameters of the network, shown in figure 3.3, are derived in Appendix B and summarized below.

The update equation for a weight linking node M in layer 2 to an incorrect node N in-layer 3, WMN,

is

MNV = WMN v ?7ZN(1 - ZNV)YJN(1 - YNV)YM (3.23)

while the update equation for the offset of the incorrect node N, UN, is

N- --1ZN(1 - Z)YN(1 - YN) (3.24)

The update-rule for the weight linking node M in layer 2 to the correct node C in layer 3, WMC, is

N

Jc = W~Jrc+7 Zn(1 - zn)Yc( - YC)YM (3.25)
n=ln#c

while the update rule for the offset of the correct node C, o-c, in layer 3 is

N
c7=U.+177~ z(-ny(- (3.26)

n=lnge

The the update equation for a weight linking node L in layer 1 to node M in layer 2, WLAf, is

N

WLM = WZM +77 E z.(1 - z,)[yo(1- Y)WM- y.(I - y)wM]ym(1 - yM)YL (3.27)
n=ln#c

while the update equation for the offset of node M in layer 2, oUM, is
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N

iM=j2.+7 L z.C(--.)[yo WM- C )wmc- .(l-Y.)WM.lyM(l-JM) (3.28)
n=ln#

The update equation for a weight linking node X in layer 0 to node L in layer 1, WKL, is

N M

WKL = KL+?1 L n1nEc1c> m
n=lnc m=1

M

- (1 - Y) E WmnIYm(1 - m)WLmYL(1 - YL)YK (3.29)
m=1

while the update equation for the offset of node L in layer 1, OL, is

N M

a+= a-+77 T, Zn(l -Z.)[Y:(1 -YO EZ Um.
n=Il.ec m=1

M

- Y.(i - Yn) E Wmn]Ym(1 - Ym)WL.yL(1 -- YL) (3.30)
m=1

3.3 Kernel Classifiers

3.3-1 Decision Functions Consider the two-dimensional exemplars representing the two

classes of patterns shown in figure 3.4. As can be seen, the two patterns can be separated by

placing variable diameter circles around the data points corresponding to each class. The place-

ment of these circles corresponds to a partitioning of the feature space into receptive fields with

each circle responding to a pattern only when the features falls within its radius. The general

equation for a decision function for this type of pattern recognition system is given by

K K
d(X) = wjjX - WiXi + WK1 (3.31)

j=1 i=1

for a K-dimensional feature vector (27:50). Again, the weights, w,,, w, and tvK+l represent the

coefficients of the decision function. This decision function can be written in matrix form as

d(.t) = 5AOT - 5B + c (3.32)
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Class A Exemplars

Figure 3.4. Circular Decision Functions

Where ZT = the transpose of 2, a K-dimensional vector containing the input features.

it = [X i, X 2, ...- , X K]

Also A is a K by K diagonal matrix containing the coefficients of the squared input features.

wil 0 ... 0

0 W22 ... 0
A= A = ". 0

0 0 ... WKZ

BT is a k-dimensional vector containing the weights or coefficients for linear input feature terms.

BT = [W, W2, .... WK]

Finally, C is a constant.

The coefficients of the A matrix determine the shape of the-decision boundaries. If A is

the identity matrix, the decision functions become hyperspheres. When A is positive definite, the

decision functions bccomc hypcrcllipsoids-and whcn A, is positivc ccmidefinite the decision-functions

become a hyperellipsoid cylinder (27:52). Again, the main problem-associated with these high order

decision functions is to find a set of coefficients, or weights, associated with the decision- function

which allows the feature space to be partitioned in a manner which separates the classes (27:48).
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3.3.2 Network Implementation The characteristics of the hyperspherical decision functions

can be modeled as a neural type element by assigning, to the neural element, the gaussian transfer

function

y(x) = e- O(")  (3.33)

where

K

K (xk - Wk)2E_- 2,2 (3.34)
k=1 ko

Here

-k k t h dimension of the input pattern vector t

wk kh dimension of the weight vector fv

o= spread or threshold in the kth direction

The only task left is to determine how to architect the network to partition the feature space with

these neural elements and perform a task of pattern recognition. This architecture can be derived by

applying the theory of approximating multivariate functions using Radial Basis Functions (RBFs).

3.3.3 Functional Approximation According to Powell (17), the real multivariable interpo-

lation problem is, given P different points (.p;p = 1,2,. . ., P) in a K-dimensional space, and- P

real numbers (dp;p = 1,2, ... , P), determine a function, f(X) from WC into R -that satisfies -the

interpolation- conditions

f(2p) = dp -(3.35)

for (p = 1, 2,. .., P). This function, f(X), can be decomposed into a linear combination of -radial

basis functions.

P
f() = Ap¢(l t - DP II) (3.36)

p= 1

where

E of K and p ,2,...,P
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Figure 3.5. One Dimensional Radial Basis Function

,= scaling coefficient

The 1 ... 11 is usually taken to be the Euclidean Norm while the op are the centers of the basis

functions (4:2). A radial basis function is a-function, such as the-gaussian shown in figure 3.5, which

is symmetric in all radial directions and approaches zero as the distance from the center increases.

Figure 3.6 shows the reconstruction of a periodic square wave from a linear combination of these

gaussian radial basis functions.

This functional approximation can be implemented with- a neural network-architecture if one

considers the task of pattern -recognition as a functional mapping from the set of data points to the

output of the network. Suppose a set of P exemplars characterize the pattern- recognition problem.

That is, sampling of the environment has led to P data points for which the desired classification

of each data point is known. Further, suppose that each exemplar is a K-dimensional vector.

[X = [X21 , ,... CK] (3.37)

Thus the set of P, K-dimensional exemplars characterize the pattern recognition problem. Now,

suppose that this set of exemplars can be classified into M-distinct classes. This- classification can

be thought of as a mapping from a K-dimensional feature space, where the exemplars reside, into

an M-dimensional space where the classification takes place. Let- the desired classification vector of

a given exemplar, say tP, be labeled as jr. If the classification problem is considered as a mapping

problem, a function needs to be determined that produces the following result for each of the P
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Figure 3.6. Square Wave Reconstructed Via Radie' Basis Functions

exemplar vectors, ip:

f(Xp)-m (3:38)

This function, once found, will produce the desired mapping from the exemplar points-to their

classifications. Applying the theory of approximating multivariate functions with a set of radial

basis functions, this function-finding problem can be modeled as a real multivariable interpolation-

problem. Using the gaussian function as the radial basis function, the- approximation can then be

written as

P (=p- k)
2

f( p) p e  -  ' (3.39)
P=I

This- approximation can be implemented as a neural network architecture as shown in-figure 3.7

where the Ap's are implemented as weights, wim, linking the nodes in the hidden layer, layer 1,

to the nodes in the output layer, layer 2. Here, the nodes in the hidden layer have the gaussialt

radial basis function as their transfer function. The nodes in the output layer compute an- linear
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Figure 3.7. RBF Neural Network Topology

combination of outputs from the nodes in the hidden layer. Thus, the overall mapping function,

for a single input pattern, -takes the form of

L

y.r = ,mY, (3.40)
l--1

where

k= =2-tE2
-=ki (3.41)

Once this network is established, the outputs can then be considered as a mapping from the input

space to the output space. This mapping can also be considered a probability density estimation,

via the technique of Parzen Windows, of the input pattern given a particular output.

3.3.4 Density Estimation The task of pattern recognition is often considered as a problem

of assigning an unlnow.:n sample, say ;, to one of J classes. Bayes' rule for this classification,

problem, called Bayes' optimal discriminant rule, assigns X to class i if

P(Z/Gi)P(Gi) > P(:/Gj)P(Gj) (3.42)
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for all i 0 j In order to implement this rule, the underlying probability density functions (pdf's)

for P(./Gj) and P(Gj) for all J classes must be known. One method ofestimating these density

functions is to group the elements of a given class into a histogram. The problem with this method

is, if the rectangular cells, or bins, into'which the data is grouped are too small, the estimate may

not be smooth. If the rectangular cells are too big, the fine details of the distribution may be lost.

These smoothness problems can be overcome by using the method of estimating density functions

through Parzen Windows or kernel estimators (8:162).

As shown in figure 3.8, the Parzen Window estimate of-the density function, P(4Z/Gj), solves

f()

pdf estimate

---- parzen windows

data points

Figure 3.8. Parzen Window PDF Estimation (8:164)

this smoothness problem by assuming that each value of the data, occurring in the sample set, also

raises the probability of any value occurring close to that value of the data. By centering a kernel

function at each data point, the final value of the estimate can be obtained by summing together all

the contributions from each value of the sample data (8:162). That is the Parzen Window estimate

has the form

P(--Gj) N -)] (3.43)

N j=1

where

K = the number of dimensions

Nj = the number of data points in class J
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h = a function of Nj referred to as the window width.

(E) = the kernel function.

To implement this estimation, an appropriate kernel function and window width must be selected.

As shown in Appendix C, the gaussian radial basis function of

- 11) = (27 ) e (3.44)

can be used as the kernel function for a Parzen Window estimation. In this case, the equation for

the density becomes

P(X/Gj) Z(27ra)- -1 e J (3.45)

For a two class problem, with the ratio of the number of sample points in each class to the

total number of sample points reflecting the apriori probabilities, the classification rule is to assign

i to group I if

NLI :GI) > -P(:ElGj) (3.46)

Substituting for the estimated densities provides the classification rule

Nz[K XkXk)2NJ K - (.-" )

NN1 I "=1 21 NYNNy- E(21raj)-' e- >7V. (27 ) (3.47)
j=1

This reduces to

~ ~ '~j)> (23) e '' (3.48)

i=1 j=1

If the spreads, or window widths, are the same for each class, o"1 = aj, then equation 3.48 becomes

a sum of gaussian radial basis functions.

N1  X'~ -)2.x .)2

h-L=1 N,2 > 2-E2_ (3.49)
i=1 j=1
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These equations have been implemented by Specht as Probability Neural Networks (PNNs)

with the topology shown in figure 3.9 (24). In this network, the hidden layer weights, or centers

Input Nodes Class A.

X1 -" lass A

X2 weights =1
Z2$

XK % % Class B

weights match exemplars Class BNodes

Figure 3.9. Probabilistic Neural Network Topology (24:528)

of the gaussian radial basis functions, are set to match the features of each of the training vectors.

The classification nodes-in the output layer are connected only to the-nodes in the hidden layer

which belong to their class. These output layer classification nodes implement equation 3.49 by

forming the simple sum of the-outputs from the hidden layer nodes in their class. In this type of

network, the a's are usually chosen on a trial and error basis.

The only difference between the PNN network and the RBF Kernel Classifier network is

that the classification nodes in the output layer of an RBF network are connected, via weighted

interconnections, to all the nodes in the hidden layer. Since it has been shown (21) that any

neural network that has its -parameters set co minimize the MSE objective function will operate

as a Baye's optimum discriminant, if the weights,w, and sigmas ,a's, for the RBF network are

established via minimization of the MSE objective function, the RBF network should approximate

the Bayes' optimal discriminant function without the trial and error approach to setting the a's

as in the PNN. Thus, the performance -of PNN network shown in figure 3.9 should approach the

performance of the RBF network shown in figure 3.7 once an optimal-choice of a-is made.
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3.3.5 Network Supervised Training As with the Hyperplane Classifier network, all the pa-

rameters for the Kernel Classifier network can be established by minimizing the MSE objective

function, incrementally, via backpropagation. Again, the MSE is defined as

1 M

MSE = Z(ym - din) 2  (3.50)
m=1

The general form of the update equation for a network parameter wj then becomes

W - OMSE (3.51)

Ifere, q is a constant which controls the learning rate. These update equations for a network with

the topology shown in figure 3.7 are derived in Appendix D. For a weight linking node L in Layer

1 to-node M in the Layer 2 WLM, the update equation-is

WLM = WLM - 7(yJ-- dM)yL (3.52)

For a weight linking node K in Layer 0 to node L in layer 1, WKL, the-update equation is

W , , (-K - WKL)

XL = L E (Y m dm)WLmYL - (3.53)
M=1 KL

while for the spread of node L in layer I in the direction of node K in layer 0, OrKL the update

equation is

KL = OKL - M (XK - WKL) 2  (354)
Tn=1 KL

3.3.6 Network Combined Training- In this type of training, the hidden layer, layer 1, weights

(radial basis function centers), the hidden layer, layer 1,-spreads (radial basis function sigmas), and

the output layer, layer 2, weights are set separately. That is, the hidden layer weights can -be set

by any of the following rules:

1. Nodes at the Data-Points

2. Kohonen Training

3. K-Means Clustering

4. Center at Class-Cluster Averages
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The hidden layer spreads can be set by any of the following rules

1. Set Sigmas at a constant.

2. Set Sigmas at P-Neighbor Averages

3. Scale Sigmas by Class Interference.

The weights linking the output layer to the hiddeai layer nodes can be set by one of the following

rules:

1. Incremental MSE Minimization

2. Global MSE Minimization

3. PNN Implementation

3.3.6.1 Nodes at the Data Points In this training algorithm, the hidden layer weights,

or centers, of the radial basis functions are set to match the features of each of the training vectors.

Suppose there are P pattern vectors where each vector is of dimension K. The vector for the pth

pattern vector can be written as

= [Xpl, ZP2,... OPK] (3.55)

Setting the weights to match the exemplars will then allow P hidden layer nodes to be created

where the output of the It h node, due to the pth input pattern will be defined from

K ___________y =-IE), 2V
2,, -eh (3.56)

Since the weights match the exemplar features, the weight vector for the 11h radial basis function

will be exactly the same as the feature vector for the 11h exemplar, t = 7z. This allows the output,

due to the p'h input pattern, for the !th radial basis function to be written as

(s h-xkI)
2

"J (3.57)

There are several advantages of establishing the weights, or centers, of the radial basis-nodes,.in

this manner. First, this allows the direct application of the theory of approximating multivariate

functions with radial basis functions. Second, this method allows a direct implementation of the

Parzen Window probability density estimation for the training data. Third, the computational time
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for setting the layer 1 weights is negligible. Finally, each radial basis function node is guaranteed

to represent a particular class of data at its maximum output.

There are some disadvantages of making the weights, or centers, of the radial basis function

nodes match the exemplar features. First, a large number of nodes could be required to effectively

partition the whole feature space. Second, the computational time to required to establish the

weights in the output layer will increase significantly as the number of nodes increases. Finally, the

weights, of centers of the radial basis functions, could include the noise associated with the input

patterns.

3.3.6.2 Kohonen Training The Kohonen Training Algorithm is a clustering algorithm

which seeks to learn the underlying probability density function of the data (19:64). Using this

algorithm to set the weights, or centers, of the radial basis functions should allow a radial!bmis

function node to respond strongly to similar inputs. Basically, Kohonen Training calls for the

establishment of a rectangular grid of nodes as shown in figure 3.10. The weights for these nodes

RBF Outputs Y2.

Figure-3.10. Rectangular Grid of Kohonen Nodes (19:65)

are adapted by applying a training vector to the layer and computing the Euclidean distance

between the weights for each ofthe nodes and the input vector (19:65-68).

K

,= Z~,k- W)2 (3.58)
k--I
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Notice, this distance measurement is the same as that of the numerator of the gaussian transfer

function of each of the nokles in the hidden layer. After this distance calculation is made, the node

whose weights are nearest to the features of the input patterns are updated, along with nodes in

the vicinity, or neighborhood of this nearest node, according to the equation

+ :tk + 0a()Qck - UWki) (3 59)

This update equation serves to move the weights of each of the updated nodes toward the input

pattern in a method which represents the vectorial difference between the weight vector and the

input feature vector (19:67). This algorithm of presenting an input pattern, finding the node with

the most similar weights and updating that node and its neighbors, is repeated over a specified

number of iterations. Once the Kohonen layer has been trained, each node will represent clusters,

or pockets, of pattern vectors.

The main advantage of training the weights in this manner is that the number of nodes in the

layer will not depend explicitly on the number of exemplars. That is, there can be far less nodes

than exemplars. Also, each node will represent more than one exemplar as the weights are trained

to represent clusters of data.

The main disadvantage of training the weights in this manner is the amount of time it takes

to train. At this time, there is no formal criteria for determining when the weights have all been

adapted to represent the underlying distribution of the data. Also, the weights are adapted in a

manner which does not reflect classification of the data. It is possible for a node in the Kohonen

layer to respond strongly for several different classes. This could serve to hinder the training of the

weights in the output layer. Finally, the number of nodes in the Kohonen layer is arbitrary. At

this time, there is no formal method of predetermining the number of nodes necessary to provide

the optimum performance.

3.3.6.3 K-Means Clustering The K-Means Clustering Algorithm is a method of train-

ing the weights, or centers, of the radial basis function nodes such-that the distance from all points

in a cluster to the cluster center is minimized (27:94). In this procedure, the number of radial basis

function nodes in the hidden layer is preset to a number K. The weights for each of these nodes are

initialized to match the-features of the first K pattern vectors. That is fij = t for all 1 < K. All

training vectors are then presented to the network. Each vector, ip, is assigned a cluster, denoted

by Sj, by , E Sj-if II.7p-0fiI < II2p-fvil for all i = 1,2,...,K and i - j. Here, the norm is taken

to be the Euclidean distance. Notice the norm is the same as the numerator in the gaussian transfer
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function for the radial basis function nodes. This means each new pattern vector is associated with

the node whose center is the closest -in a-Euclidean measure. Once all patterns have been assigned

a cluster, the new -cluster center weights are computed as the average of the features of the pattern

vectors assigned to the cluster. That is

= 1 N (3.60)

Here, N, is the number of pattern vectors assigned to the cluster and i',o is a pattern vector

assigned to that cluster. Since this procedure adapts the weights, it must be repeated until the

weights stabilize, or no longer adapt. This occurs when avl(n + 1) = fvl(n) for all cluster centers.

The main advantage of training the weights, or centers of the radial basis function in this

manner is that the -number of nodes does not depend on the number of exemplars. This means

there can be many-more exemplars than nodes, with each node's weights centered at the average

of the pattern vector features associated with the cluster. Furthermore, each radial basis function

-node will now be able to represent pattern-vectors with similar features.

The main disadvantages are that- the number of radial-basis function nodes, which is deter-

mined by K, the number of clusters, is arbitrary and each node is now allowed to respond strongly

to pattern vectors of different classes. Also, the performance of the algorithm-is dependent on the

number of clusters, initial location of the clusters and the properties of the data (27:95). Finally,

there is no guarantee that the algorithm-will converge.

3.3.6.4 Center at Class-Cluster Averages In this algorithm the weights, or centers of

the radial basis function nodes are allowed to adapt themselves, in an iterative process, to the

centers of clusters of pattern vectors of the same class. Furthermore, this algorithm is adaptive in

the sense that the number of nodes does not need to be preselected. The distribution of the data will

determine the required number of radial-basis function nodes. In this algorithm a cluster radius, R,

is first preset and the network begins with one node whose weights match the-first pattern vector.

This node is also set to respond to the class of the first pattern vector. A new pattern vector, tp,

is then applied to-the network. The cluster assignment rule is t E Sj if 112 - fvjl < jj: - t-i < R

and the class of i-is the same as Sj. If this relation isn't true-then a new node is added such that

the weights and class of the new node match that of the new input pattern. If this relation is true,

then the weights of the cluster center are adapted to the new average by
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tDj(t + 1) = zj (t) + +' - (3.61)N+I

This process of presenting a new pattern vector to the network, checking to see if this new pattern

vector can be associated with an existing cluster and adjusting the cluster center or adding a new

cluster center will- continue until all exemplars are tested. Since it is possible for exemplars to

become "uncovered" during the update of cluster centers, the algorithm is repeated until no new

nodes are added.

The main advantages of this algorithm are that the number of radial basis function nodes

does not need to be selected beforehand and each node will respond strongly to only one class.

The main disadvantage of this algorithm is that the association radius, or vigilance parameter

R, must be selected arbitrarily.

3.3.6.5 Set Sigmas at Constant In this algorithm, the sigma, or spread, for each radial

basis function node is preset to a constant, C. Under this condition, the output for the 1th radial

basis function node due to the pth pattern vector P becomes

YPI = e-2C E,(z ,,] (3.62)

If the weight vectors had been previously set to match- the features of the exemplar vectors, the

network then calculates a Parzen Window estimate of the probability distributions of the data.

The main disadvantage of training the sigmas in this manner is that, since the constant is

preset and not changed, there is no way of determining if the-entire feature space is partitioned.

3.3.6.6 Set- Sigmas at P-Neighbor Averages -In this algorithm, the sigmas for each

radial basis function node are allowed to vary according to a distance metric between their weights,

or centers, and the weights or centers of their P nearest neighbors. That is, after the weights, or

centers, of each radial basis function node is set, the Euclidean distance between the center of each

radial basis function -node and its neighbors are calculated. For example, the distance between

radial basis function node i and radial basis function-node j is

K

,i = Z(Wkj - Wki) 2  (3.63)
k=1
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From these calculations, the P radial basis functions having the-smallest distance, di, are then

used to set the sigma, or spread, (ai), for the ith radial basis function by the following equation:

p=1 (3.64)

This equation makes o'i equal to the root mean square of the sum of distances between the center

of i~h radial basis function and its P nearest neighbors (13:137).

The main advantages of setting the a's in this manner are that each a can be different for

each node and, since each o is a function of the separation between node centers, the feature space

will usually be completely partitioned.

The main disadvantage of setting the a's in this manner is that P must be determined

beforehand. If P is too-small, the a's will be small and the feature space will not be covered

adequately. If P is too large, the a's will-allow too much overlap between patterns of different

classes. This could result in a node responding too strongly to more than one class.

3.3.6.7 Scale Sigmas by Class Interference In this algorithm, the a's are adjusted,

from a preset constant, to prevent the radial basis function nodes from responding too strongly

from pattern vectors of different classes. In order for this algorithm to work, each radial basis

function node must be assigned the responsibility for responding to only one class for the training

data. This can be done by setting the weights using the Nodes-at Data Points or Center at Class-

Cluster Averages Algorithms previously discussed. After the weights are set, this algorithm then

presents an exemplar pattern Op and calculates the output for each radial basis function node by

Ypl = eS2 kL(x,k (3.65)

If the output for that node is above some preset threshold, T, and the node is not assigned to

respond to the same -class as that of the pattern vector, XP, then that node's a is scaled by a

constant until- the output is less than T. That is if yp' > T then

a+ = (1 - C)O1  (3.66)

This process is then repeated for each pattern vector in the training set.
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The main advantage of setting the a's in this manner is that each node is guaranteed to

respond to one and only one class for the training data within some threshold T. Another advantage

is that each node can now have a separate a.

The- main disadvantage of setting the a's in this manner is that if the pattern vectors are

very close together, via the Euclidean distance measurement, then each node will lose its ability to

generalize.

3.3.6.8 Incremental MSE minimization As shown in appendix D, the update equation

for the weight-linking node L in layer 1 to node M in layer 2, WLM is

LM = WLZf - - dM)yL (3.67)

These parameters can be updated through backpropagation even though the other network param-

eters -have been-preset. However, this process can still take many iterations to converge.

3.3.6.9 Global MSE minimization As shown in appendix D, if the weights and sigmas

(spreads) of the first layer have been established, the weights linking nodes layer 1 to nodes in layer

2 can be established by a global minimization of the MSE function over all training patterns (23).

When trained in this manner, the update equation for a weight linking node B in layer 1 to node

D in- layer 2- is

W = (MT)-IyTS (3.68)

Here, W is an L by M matrix containing the weights linking the nodes in the hidden layer to an

nodes in the output layer. That is

W11 W12 ... W M

W2 1  W22 ... W2M (3.69)

WL1 WL2 ... WLM

where WLM is the weight linking the Lh node in the hidden layer, layer 1, to the M node in

the output -layer, layer 2. The M matrix is an I by L matrix containing the summation, over all

patterns, of the product of each radial basis function output, for a given input pattern and the B h

radial basis function output for that pattern. That is
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M1 1  M1 2  ... MiL

M 21  M2 2  ... M2L (3.70)

ML1 ML2 ... MLL J
where M1D -= =1 yplYpB. Also, Y is a P by L matrix containing the outputs for each of the L

radial basis functions for all P patterns. That is,

Y11 Y12 ... YIL

Y21 Y22 ... Y2L (3.71)

YPI YP2 ... YPL

Finally S is a P by M matrix containing the-desired outputs for each of the M output nodes for all

P patterns. That is,

d1  d12  ... dim

S d21  d 22  ... d2M (3.72)

dpi dp 2  ... dpM

This method only works for matrices that do not become singular or near-singular, which can

happen if the-exemplar data points used to center the-radial basis functions contain redundant

information. If they do, the Singular Valued -Decomposition- of the matrix may be used. Conversely,

the as of the offending nodes may be adjusted to eliminate the redundancy.

3.3.6.10 Probability-Neural Network (PNN) As shown in Chapter 3, after establishing

the-parameters for the nodes in the hidden layer, layer 1, a PNN can be constructed by connecting

each- output layer -node to the hidden layer nodes representing the output layer node's class. In

this network, the-weights connecting the hidden layer nodes in layer 1 to the output layer nodes in

layer-2-are seL Lo-1.
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3.4 Summary,

This chapter discussed the general operation of Hyperplane and Kernel Classifier neural net-

works. The objective functions used to implement the Hyperplane Classifier networks were then

analyzed, followed by the development of the equations necessary to implement these classifiers

as neural networks. The relationship between pattern recognition, functional interpolation and

probability density estimation were then presented as implementable properties of Kernel Classifier

networks. This chapter concluded with the development of equations implementing these classifiers

as neural networks.
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IV. Software Description

4.1 Introduction

The software to be described in this chapter was designed according to an object-oriented

approach. This chapter begins with a description of the data structures implemented for the

software and concludes with a brief discussion of the software modules. An in-depth description

of these items, along with the mapping of the training algorithms developed in chapter 3, into

software functions, is given in Appendix F.

4.2 Approach

Artificial neural networks are composed of nodes. Each node has associated with it certain

parameters such as a weight vector, an offset, a transfer function, and a class to which the node

responds. The main difference between different types of networks is the way in which the nodes

are connected to one another and the method of setting the network parameters. Therefore, in

order to maximize the types of networks which could be configured, the only entity implemented

as an object was the node. Each node was then assigned the following attributes:

(a) weights- wj

(b) sigmas - o-j

(b) connections

(d) transfer-function

(e) class

The operations that can be performed on each node are the following:

(a) assign transfer function

(b) calculate node output

(c) initialize node weights and sigmas

(d) assign a node to a class

(e) assign a node to be connected to another node

(f) update (train) weights and-sigmas

With these attributes and operations a variety of networks can by formulated. This thesis

implemented just the feedforward type of network architecture. However, this object oriented
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Figure 4.1. Feed Forward Network (19:56)

design approach will allow future enhancements to more complicated networks such as recurrent

networks and higher-order networks.

4.3 Networks

The only type of network implemented at this time is the feed forward network. A feed

forward network, as shown in figure 4.1, is a network in which each node is assigned to a particular

layer and receives inputs only from the nodes in the previous layer. Pattern vectors-are input to

the network via the nodes in layer 0. These nodes have the identity transfer function and serve

to propagate the features from the input pattern, across the internodal weights and thresholds, to

nodes in layer 1. The layer 1 nodes will transform these inputs into internal representations, using

their assigned transfer functions, and transmit -these representations, via the internodal- weights

and thresholds, to the nodes in layer 2. This process of transforming the data and propagating the

new representation will continue through each layer of the network. The outputs-for the last-layer

in the network will be used to determine the classification of the input pattern.
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Figure 4.2. Software Structure Chart

4.4 Structure

The software implemented in this thesis consists of the-nine modules shown by the structure

chart in figure 4.2.

4.4.1 NETMENU This module is the overall controlling module of the network. It provides

the user interface to the software via the SUN terminal and keyboard and calls the appropriate

modules to execute the users decisions.

4.4.2 NETERROR This module contains the functions necessary to determine the net-

work's classification of a data vector and the error performance of the network.

4.4.3 NETTRAIN This module contains the functions necessary to establish the network

weights via the following training procedures:

a) Nodes at the Data Points

b) Center at Class-Cluster Averages

c) K-means Clustering

d) Train via Kohonen

e) Global MSE Minization
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f) Backpropagation for MSE, CE and CFM algorithms.

g) Probability Neural Networks

Each of these functions accomplishes its training routine by executing the specialized' functions

contained in NETAUX. NETTRAIN also contains the functions necessary to establish the a's for

the network nodes via the following training procedures:

a) Scale Sigma by Class Interference

b) Set Sigma According to P-Neighbor Distance

c) Set Sigma to a Constant

4.4.4 NETINPUT This module contains the functions necessary to load the training and

test data patterns. This data may be loaded from separate training and test files or from a single

file. This loading of training and test patterns may also be accomplished either in the sequence

listed in the data files or in a random manner.

4.4.5 NETINIT This module contains the functions which allocate memory for the nodes

and data records, correct node weights and connections, and initialize the node weights, sigmas,

transfer functions and network connections.

4.4.6 NETSHOW This module contains the output functions necessary to display and file

the performance and parameters of the network.

4.4.7 NETOUT This module contains the functions necessary to compute the outputs for

each node in the network, the outputs for each layer of a feedforward network, and the output for

the entire network due to a given input pattern.

4.4.8 NETA UX This module contains the training subfunctions called by NETTRAIN.

Appendix F contains a detailed description of each function in this module.

4.4.9 NETMATH This module contains the mathematical functions used by the various

,training algorithms within the module NETTRAIN.

4.5 Implementation

The software code developed for this thesis and implemented under these modules is listed in

Appendix G.
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4.6 Summary

This chapter provided a brief overview of the software developed for this thesis. After devel-

oping the data structures implemented in the softwared, the sectioning of the software into modules

was outlined.
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V. Data Analysis

5.1 Introduction

Using the software developed in Chapter 4, two pattern classification problems will be ana-

lyzed. The first problem deals with the classification of coded digital communication signals while

the second problem deals with classification of radar platforms. This chapter begins by discussing

the data used to train and test the neurai networks developed to classify coded digital communica-

tion signals. After detailing the methods used to train various networks to solve this classification

problem, the results of the training and testing are then presented. This chapter concludes with-a

discussion of the data used to train and test the neural networks developed to classify radar systems

and an analysis of training and test results.

5.2 Communication Signal Characterization

5.2.1 Data Description In this two-class problem, an acousto-optic correlation system was

used to capture correlation signatures of spread spectrum signals for both a direct sequence and

a linear-stepped frequency hopped signal. Over 200.pattern vectors were first formed by sampling

known waveforms at 1000 data points. After averaging consecutive data point pairs, thereby

reducing the number of data points to 500, the peak of the signals were identified and 25 points

on each side of the peak were extracted. These 50 data points, now representing a-50 dimensional

feature vector, were normalized to values between -1 and 1 by dividing each dimension by the

magnitude of the largest component. One hundred feature vectors for each class now represented

the-signature for the direct sequence and the linear stepped frequency hopped -encoding schemes.

Feature vectors representing the direct sequence signatures were then assigned to class 1 and feature

vectors representing the linear stepped frequency-hopped signatures were assigned-to class 2. The

final data set contained 101 pattern vectors for each class; with each pattern vector having 50

dimensions.

5.2.2 Testing This data was processed using both Hyperplane Classifiers and Kernel Clas-

sifier networks. The parameters for each of these networks were set using the algorithms developed

in Chapter 3. The training data for each of the classes was randomly selected for each network

run. For eachlest, 5rfeature vectors from each class were used-to train the network and a different

50 feature vectors from each class were used to test the network. For each network, there were

50 nodes in layer 0, one node for each of the dimensions of the-input data. The number of nodes

in the final, or output, layer of the network was set at two with each node assigned- to represent
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one of the two classes. The number of hidden layers and the number of nodes in the hidden layers

were allowed to vary according to the parameters of the network. For this classification problem,

the network was allowed to make a classification based on which node in the output layer had the

higher output.

5.2.3 .Fyperplane Classifiers The Hyperplane Classifier networks developed for this classi-

fication problem were based- on the topology shown in figure 3.3 -with each network consisting of

two hidden layers. The 50 nodes in the input layer, layer 0, had the identity transfer function. The

number of nodes in the first-hidden layer, layer 1, was set at 18, the number of nodes in the second

hidden layer, layer 2, was set at ten, and the number of nodes in the output layer, layer 3, was

set at two. The nodes in each of these layers were assigned the sigmoidal transfer function. The

parameters- for each of the-nodes were trained via backpropagation according to either the MSE,

CE or CFM objective functions discussed in Chapter 3.

5.2.3.1 MSE-Objective Function To characterize the performance of Hyperplane Clas-

sifiers trained using this-algorithm, ten different sets of training- data were-applied to the network

and the performance of the network was measured for each set as shown Table E.1. Here, a correct

response for the training data-is defined to occur when the output for -the correct classification

node was greater-than .9-and the output for the incorrect classification-node was less than .1. As

shown in figure 5. 1, -the average performance of the network converged rapidly until about 15000 -

80

60

40

0

20 Training -

0 5000 10000 15000 20000 25000 30000
Iterations

Figure 5.1. Performance vs Training Iterations for MSE Algorithm

20000 iterations. At this point, the categorization performance of-the network reached 90 percent.

From 20000 - 30000 iterations, the categorization performance slowly increased to the final average
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of 97.16 percent. The robustness of the network, for both the training and the test data, was

calculated as shown in Table 5.1.

Table 5.1. Robustness Measure for MSE Training
%Correct

Training Test
Avg 97.16 79.7
Std 4.51 5.92

5.2.3.2 CE Objective Function To characterize the performance of Hyperplane Classi-

fiers trained using this algorithm, ten different sets of training data were applied to the network and

the performance of the network was measured for each set as shown in Table E.2. Here, a correct

response for the training data is defined to occur when the output for the correct classification node

was greater than .9 and the output for the incorrect classification node was less than .1. As shown

in figure 5.2, the average performance of the-network converged rapidly until about 5000 - 10000

200
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Figure 5.2. Performance vs Training Iterations for CE Algorithm

iterations. At this point, the performance of the network remained relatively stable. From 10000

- 15000 iterations, the categorization performance slowly increased to the final average of 100.00

percent. The robustness of the network was caicilated as shown in Table 5.2.

As compared to the networks trained to minimize the MSE objective function, the networks

trained to minimize the CE objective function performed at about the same level of categorization

accuracy but converged in about half the iterations as the MSE objective function. This is due to
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Table 5.2. Robustness Measure for C8 Training
% Correct
Training Test

Avg 100.0 81.2
Std 0.0 4.62

the lack of the term yn(1 - y,) in the CE update equations. Since the maximum value for this

term is 1/4, the parameters for the MSE network are adapted much more slowly than that of the

CE network.

5.2.3.3 CFM Objective Function To characterize the performance of Hyperplane Clas-

sifiers trained using this algorithm,,-ten different sets of training data were applied to the network

and the performance of-the network measured for each set as shown in Table E.3. As-shown in

figure 5.3, the average performance of the network converged rapidly until about 30000 - 35000

100 1 a I I I -
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0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
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Figure 5.3. Performance vs Training Iterations-for CFM Algorithm

iterations. At this point, -the performance of the network remained relatively stable. From 35000

- 50000 iterations, the categorization performance slowly increased to the final average of 88.83

%. The robustness of the network was-calculated as shown in Table 5.3. As expected, -the catego-

rization performance for -the training data was less than that for either the MSE-or CE-objective

functions. However, the performance for the test data proved lower than that of either the MSE and

CE objective functions for this data. If the two tests having the lowest categorization performance

on-the test data are removed, the categorization performance of the CFM for the test-data rises to
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Table 5.3. Robustness Measure for CFM Training
% Correct
Training Test

Avg 88.83 73.20
Std 5.37 7.93

76.63 % which nearly matches that of the MSE. This seems to indicate the pattern space does not

contain pockets of data which would cause-the MSE and CE algorithms to have larger classification

errors for a correct response than for an incorrect response.

5.2.4 Kernel Classifiers The networks developed to categorize this data are based on the

topology shown in-figure 3.7. The 50 nodes in the input layer, layer 0, had the identity transfer

-function and two nodes in the output layer, layer 2, had the-linear transfer function. The number

of nodes in the hidden layer, layer 1, was-a function of the algorithm used to train- the layer 1

weights. These nodes were assigned the gaussian transfer function.

5.2.4.1 Nodes at the Data Points In this test, the performance of the Kernel Classifier

-network, using the interpolation theory of applying the nodes at the data points, was measured.

The weights, or centers, for the nodes in layer 1 were set using the-Nodes at Data Points algorithm

and the sigmas were set using the Scale Sigmas by Class Interference algorithm. The-weights linking

the nodes in the output layer to the nodes in the first layer were trained via global minimization

of-the MSE objective function. The performance of the network was then analyzed as the-number

of nodes in the hidden layer was allowed to vary from 10 to 50; The complete data are shown in

Tables E.4 and E.5. A plot of this performance is shown in figure 5.4. As expected, as the number

of-RBF nodes in the hidden layer, layer 1, increased, the classification performance of-the network

increased for both the training and the test data. The maximum performance occurred when the

number of nodes matched the number of exemplars at 102.

The overall performance, or robustness, of the network when layer 1 contained 102 nodes

was found to be as-shown in Table 5.4. As-shown by this table, setting the weights-of the layer

1 nodes at the training data points allows the network to 'memorize' the training data while still

performing relatively- well on-the test data. However, this-performance is at the-expense-of many

layer 1 nodes.
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Figure 5.4. Performance vs Nodes for Nodes at Data Points

Table 5.4. Robistness Measure for Nodes At Data Points
Correct

Training Test
Avg 100.00 84.90
Std 0.00 3.94
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5.2.4.2 Kohonen Training In this test, the ability of a fixed number of Kohonen layer

nodes to distribute themselves to cover the pattern space was measured. The weights, or centers,

for the nodes in the hidden layer, layer 1, Were trained using the Kohonen Training algorithm and

the sigmas set using the Set Sigmas at P-Neighbor Averages algorithm. The weights linking the

nodes in the output layer to the nodes in the first layer were trained via global minimization of the

MSE.

With P arbitrarily held at six, the performance of the network was analyzed as the number of

nodes in the Kohonen layer was increased from 16 to 100. The complete data are shown in Tables

E.6 and E.7. As shown in figure 5.5 as the number of nodes increased, the ability of the network to
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Figure 5.5. Performance vs Nodes for Kohonen Training with Six P Neighbors

categorize the training data increased. Howc-ver, the ability of the network to categorize the test

data decreased. This is due to the fact that as the number of nodes is increases, the distance to the

six nearest neighbors decreases. Thus, the network loses its ability to generalize. The decrease in

the training performance for 100 nodes was due to two of the networks converging to a performance

of less than 85%. If these two tests are removed from the performance calculations, the average

performance rises to 97.06%.

The performance of the- network was then- analyzed by- allowing P to be equal-to the square

root of the number of nodes in the Kohonen layer. The complete data are shown in Tables E.8

and E.9. As shown in figure 5.6 allowing P to increase as the number of nodes increased had little

effect on the performance of the network. Again, the decrease in the training performance for 100
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Figure-5.6. Performance vs Nodes for Kohonen Training with Variable P Neighbors

nodes was due to two of the networks converging-to a performance of less than 85%. If these two

tests are removed from the performance calculations, the average-performance rises to 96.79%.

The maximum robustness of the network occurred when the number of Kohonen nodes was

64 and the number of P-Neighbors used to determine the RBF -spreads was eight. This data is

shown in Table 5.5. Comparing these results to that of the networks trained via the Nodes at Data

Table 5.5. Robustness Measure for Kohonen Training
% Correct
Training Test

Avg 97.94 80.20
Std 1.42 3.84

Points algorithm shows that the maximum accuracy for the test-data was about 5% less for the

Kohonen Training algorithm. Also, when 100 nodes were used -to train the network, the training

performance became unpredictable. This is probably due to the fact that the Kohonen Training

algorithm adapts the layer 1 weights to the data-independent of the class of the-data. Thus, it is

highly likely-that certain layer 1 nodes actually represent more-than one class of the data.

5.2.4.3 K-Means Cluster In this test, the ability of the network to distribute a set

number of nodes to cover the pattern space, using the K-Means algorithm, was studied. The
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number of nodes in the hidden layer, layer 1, was set to K, the number of clusters. The weights,

or centers, for the nodes in layer 1 were trained using the K-Means Clustering algorithm-and the

sigmas set using the Set Sima at P Neighbor Averages algorithm. The weights linking the nodes

in the output layer to the nodes in the first layer were trained via global-minimization of the MSE.

The performance of the network was first analyzed by setting the P-Neighbors-to 6 and letting

the number of nodes in the hidden layer vary. The complete data are shown in Tables E.10 and

Eli. As shown in figure 5.7 the performance of the network increased until as the number of nodes
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Figure 5.7. Performance vs Nodes for K-Means Clustering-with Six P-Neighbors

in the hidden layer increased. When number of nodes reached the range of-60 to 70 nodes, the

performance of the network, over the test data, leveled out, indicating-the pattern space was fully

covered.

The performance of the network was then analyzed by setting the number of-nodes in the

hidden layer, layer 1, to 60 and varying the number of P-Neighbors from 1 to 30. The complete

da-.a are shown in Tables E.12 and E.13. As shown in figure 5.8 the categorization performance

of the network was relatively constant until the number of P-Neighbors was eight. At that point,

the performance of the network, over the test data, decreased slightly as P was increased. The

robustness of the network with 60 nodes and P set at 6 is shown in Table 5.6.

Comparing the performance of this training algorithm to the Kohonen 'Raining algorithm

shows the performance of two algorithms was roughly equivalent. However, the amount of time
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Figure 5.8. Performance vs P-Neighbors for K-Means Clustering with Sixty Clusters

Table5.6. Robustness Measure for K-Means Clustering

% Correct
Training Test

Avg 95.59 80.90
Std 1.71 3.36

5-10



required to train via the K-Means Clustering algorithm was less than 30 minutes while the amount

of time required to train via the Kohonen Training algorithm exceeded 120 minutes.

5.2.4.4 Center at Class-Cluster Averages In this test, the ability of the network to

add the required number of nodes to cover the input data space, using the Center at Class-Cluster

Averages algorithm, was measured. The weights, or centers, for the nodes in the first layer were

trained using the Center at Class-Cluster Averages algorithm and the sigmas set using the -Scale

Sigmas by Class Interference algorithm. The weights linking the nodes in the output layer to

the nodes in the first layer were trained via global minimization of the MSE. The performance

of the network was analyzed by varying the average threshold (vigilance) of the nodes in the

hidden layer. The complete data are shown in Tables E.14 and E.15. As shown in figure 5.9,

100 1
Training -4-

80

60

Z

40

20

0-
0.5 1 1.5 2 2.5 3 3.5 4

Average Threshold

Figure 5.9. Nodes vs Average Threshold for Center at-Class Averages

as the average threshold increased, the number of nodes required to cover the pattern space of

the training data decreased. However, as shown in figure 5.10, as the number-of nodes decreased,

the categorization performance of the network decreased. By comparing both figures, it can be

seen that the categorization performance of the-network remains fairly constant until the average

threshold increased to a value of 1.5. At this point, 55 to Pn -nodes adequately cover the pattern

space. As the average threshold increa.sed between 1.5 and- 2.5, the number of nodes continued

to decrease dramatically while the classification performance decreased slowly. As the average

threshold increased past 2.5, the performance of the network deteriorates- rapidly. The robustness

of networks, trained in this manner with an average threshold of 20, is shown-in Table 5.7.
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Figure 5.10. Performance vs Average Threshold for Center at Class Averages

Table 5.7. Robustness Measure of Center at Class Averages

% Correct
Training Test

Avg 95.39 80.40
Std 1.96 3.17

It is interesting to compare the results of this training algorithm to the results obtained from

the K-Means algorithm. Both algorithms are clustering algorithms which set the weights of their

clusters-equal to the averages of the features of pockets-of data. It can be seen that the robustness

measure for the Center at Class-Cluster Averages algorithm, which used an average of 24 nodes -in

the hidden layer, layer 1, was roughly equivalent to that of the K-Means algorithm which used- 60

nodes. This shows that centering the-nodes at pockets of patterns according to class may be better

than -centering the nodes at pockets of data without regard to class.

5.2..2.5 PNN Training In this test, the performance of -the Probabilistic Neural Net-

work (PNN), developed by Specht, versus the RBF Kernel Classifier was analyzed. The number

of nodes in the-hidden layer was-set equal to the-number of training points, 102. The weights for

the layer 1 nodes were-set using the Nodes at Data Points algorithm. For the PNN, the output

layer, layer 2, nodes were only connected to the hidden layer nodes representing their class. The

weights connecting these hidden layer nodes to the respective output layer nodes were set to one.
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For the Radial Basis Function (RBF) network, the weights linking the nodes in the output layer to

the nodes in the first layer were trained via global minimization of the MSE. The sigmas for each

network were then allowed to vary from .5 to 3.0. The categorization performance of the network

for both the training and test data were then documented as shown in Tables E.17, E.18, E.19, and

E.20 and plotted as shown in figures 5.11 and 5.12.
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Figure 5.11. PNN vs RBF Performance for Training Data
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Figure 5.12. PNN vs RBF Performance for Test Data
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As the sigmas, or RBF spreads, for both networks were increased to .5, the performances were

relatively the same. However, as the sigma increased from .5 to 1.5, the performance of the PNN

decreased while the RBF Network remained relatively constant. This indicates the weights in the

RBF Network are serving to offset the choice of a bad sigma for the PNN. As sigma increased from

1.75 to 3.0, the performance of the RBF network began to deteriorate rapidly. At a sigma of 3.0,

the both networks performed at the same level. The best performance for the PNN Network, as

shown in Table 5.8, occurred when sigma was set to .5. On the other hand, the best performance

Table 5.8. Robustness Measure of PNN Network
% Correct
Training Test

Avg 100.00 82.50
Std 0.00 81.20

for the RBF Network, as shown in Table 5.9, occurred when sigma was set to .75. This shows

Table 5.9. Robustness Measure of RBF Network
% Correct
Training Test

Avg 99.61 83.30
Std 0.78 5.40

the increase in the sigma, or receptive field spread, allowed the RBF Network to generalize a little

better than the PNN Network.

5.2.5 Summary A comparison of the performance of the Hyperplane and Kernel Classifier

networks is shown in Tables 5.10 and SJ 1.

These tables show both types Nf- networks performed equally well. The ityperplane Classifier

networks used less nodes then the Ke~rnel Classifiers but took longer to train. Similar observations

Table 5.10. llypdrpla'ie Classifier Network Robustness SummaryU Output Layer Convergence Avg % Correct
Objective Function Iterations [ Training I Test I Total

MSE 30,000 97.16 79.70 88.52
CE_ 28,000 100.00 81.20 90.69

CFM 50,000 88.83 73.20 81.09
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Table 5.11. Kernel Classifier Network Robustness Summary
Layer 1 1 Avg % CorrectIt Training Method I Number of Nodes I Training Test Total

Node at Data Points 102 100.00 84.90 93.45
Kohonen Training 64 97.94 80.20 90.05

K-Means Clustering 60 95.59 80.90 89.20
Center at Class Avgs 24 95.39 80.40 88.85

PNN Network 102 100.00 81.20 90.69
RBF Network 102 99.61 83.30 91.54

have been made by Moody (13). The performance of the different Kernel Classifier networks

depended on the number of RBF nodes allocated to layer 1. The best performance occ'Jrred when

an RBF node was placed at each of the 102 training vectors. However, only slightly degraded

performance occurred when a lesser number of nodes was allowed to adapt, via the Kohonen

Training, K-Means Clustering, and Center at Class-Cluster Averages algorithms, to reflect the

data. Finally, the performance of the PNN was inferior to that of the RBF based Kernel Classifier

network. This shows the weights linking the layer 1 nodes to the layer 2 nodes in the Kernel

Classifier may serve to correct for non-optimal choices of the spreads of the RBFs.

5.3 Radar Systism Characterization

5.3.1 Introduction This section addresses the development and testing-of a neural network

capable of categorizing a radar platform from the characteristics of its electromagnetic signal.

5.3.2 Data Description The data deemed necessary to perform classification of radar plat-

forms are the radio frequency of the electromagnetic signal, the pulse repetition interval of the

pulsed waveform, the stagger level of the pulse repetition interval, the width of the transmitted

pulse, -the scan type used by the radar, and the circular period of the scan.

5.3.2.1 Radio Frequency The Radio Frequency (RF), as shown in figure 5.13, -of a

radar platform's transmitted signal represents the frequency, in hertz, at which the carrier waveform-

is transmitted. This feature is not limited to a specific frequency for each platform but can vary

within a given a range, or band, of frequencies over which the carrier is transmitted. Also, many

radar platforms transmit their carrier in several different RF bands, depending on the mode in

which the platform is operating.
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Figure 5.13. Radar Signal

5.3.2.2 Pulse Repetition Interval The Pulse Repetition Interval (PRI), as shown in

-figure 5.13, of a radar platform's transmitted signal is the interval of time, in microseconds, between

consecutive transmitted pulses. This feature is not limited to a specific time for each platform-but

can vary within a-given range of time. Also, many radar platforms change their PRI operating

bands depending on the mode in which the platform is operating.

5.3.2.3 Stagger Level The use of more than one pulse repetition frequency, as shown

in figure 5.13, by a radar platformis known as its Stagger Level. This change in repetition frequency

of the transmitted pulses allows the radar to overcome the blind speeds inherent in the detection

of moving .targets.

5.3.2.4 Pulse Width The -Pulse Width (PW), as shown in figure 5.13, of a radar

platform's transmitted signal is the time duration, in microseconds, of the transmitted pulses. This

characteristic determines the radar's ability to resolve closely spaced =targets within Its range. This

feature-is not limited to a specific unit of time for each platform but can vary within a given range

of tilnes. Furthermore,-many rad6 r platforms can change the range of the PW of their transmitted

signals.

5.3.2.5 Scan Type The Scan Type is the method the radar platform uses, such as a

conical- scan, zo direct its antenna -beam at a -target. This study concentrated o circular scan

platforms with different types of scans.
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5.3.2.6 Circular Scan Period The Circular Scan Period is the length of time, in mil-

liseconds, the radar platform takes to repeat one frame of its search. This feature is not limited to

a specific unit of time for each platform but can vary within a given range of times. Also, many

radar platforms can change -the- length of their Circular Scan Period depending on the mode in

which the platform is operating.

5.3.3 Data Processing

5.3.3.1 Data Normalization The data used to develop the network does not represent

actual radar platform features but sets the ranges allocated to each platform in the form of a

range vector. Because the comparative ranges for each of the patterns were unequal, the data

was normalized by dividing each feature of the data by one-half the maximum value allowed for

that -feature. This limits the range for each of the feature components to a number between 0 and

2. Also, in this problem, several of the ten radar platforms had features -which overlapped in the

feature-space.

5.3.3.2 Data Generation For each platform the training and-test vectors were gener-

ated- randomly. This was accomplished by taking each range vector within a class and generating a

set number of random pattern vectors, according to-a uniform distribution, -using the range vector

as-a template. For the RF, PRI, PW and Scan Period features, the random-number generated was

forced to reside inside the ranges allocated to each platform. For the Scan Type and the Stagger

Level, the features were the-same as the template vector.

5.3.4 Network Development For this problem, Kernel Classifier networks were developed to

categorize ten radar platforms. Since the networks -developed using the Center at Class-Cluster

Averages algorithm performed comparatively well, for a smaller number of nodes, for the commu-

ni.ations signal categorization- problem, these Kernel Classifier networks were also developed using

this-algorithm. For these networks, a correct classification resulted when the output of the correct

classification node exceeded a classification threshold.

5.3.4.1 RBF Network This network was-constructed according to the topology shown

in figure 3.7. The input layer, layer 0, contained six nodes while the nodes in- the output layer, layer

2, -contained-ten nodes,-one node -representing-each-class. The network uscd=the-Ccntcr-at-Class-

Cluster Averages algorithm-to determine the number-of nodes in the hidden layer, -layer 1, and their

corresponding weights. These nodes were assigned -the gaussian transfer -function while the nodes

in the output layer were assigned the linear transfer -function. The sigmas-for the hidden layer
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nodes were established using the Scale Sigmas by Class Interference algorithm while the weights

linking the output layer nodes with the hidden layer nodes set via global minimization ofthe MSE.

Three hundred pattern vectors, 30 from each platform, were then used to train the network while

1990 pattern vectors, about 200 from each platform, were used to test the network. Measurements

were then taken of the performance of the network as the classification threshold varied. This

data is shown in Table E.21. and plotted in figure 5.14. From this figure, it can be seen that
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Figure 5.14. Performance Radial Basis Function Network-for Radar Data

the categorization performance of the network decreased as the class threshold increased until a

classification threshold of .4 was reached. At this point the categorization performance leveled out

at 93.67 % for the training-data and 82.88 % for the test data. This-indicates that if the output

of a node was greater than .4, there is an 82.88% chance that a correct classification was made. If

the output-of a node was-greater than .8,-there is a 72.29% chance that a correct classification was

made. The inability of the network to train at 100 % was due to the overlap of the parameters in

the feature space from different platforms.

5.3. 4.2 Arbitrator Network This network was constructed according to the topology

shown-in -figure 5.15. In this-system, Network A was trained to categorized platforms 1-5 while

Network B was trained to categorized platforms 6-10. Network C was trained to categorize all ten

platforms by arbitrating-between Network A and Network B.

For Networks A and B, the input layer, layer 0, contained six -nodes while the nodes in
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Figure 5.15. Radar Data Arbitration Network

their output layer, layer 2, contained five nodes, one node -representing each class. These -networks

used the Center at Class-Cluster Averages algorithm to- determine the number of nodes in -the

hidden layer, layer 1, and their corresponding weights. These nodes were assigned the gaussian

transfer function while the nodes in the output layer were assigned the linear transfer function. For

Network A, the sigmas for the hidden layer nodes were established using the Scale Sigmas by Class

Interference algorithm while, for Network B, the sigmas-were set using the P-Neighbors algorithm.

For both networks, the weights linking the output layer nodes with the hidden layer nodes were

set via global minimization of the MSE. Three hundrel- pattern vectors, 60 from each platform,

were then used-to train each network independently. Network A was then tested with 1000 pattern

vectors from classes one through five, group A, while Network B was tested with 990 pattern vectors

from classes six through ten, group B. Measurements were-taken of the performance each retwork

for as the classification threshold varied. This data is shown in Tables E.22 and E.23 and plotted

in figures 5.16 and 5.17.

After the parameters for Network A and B were set, Network C was established to arbitrate

the outputs between Networks A and B. This network had ten nodes in its input layer, one for

each of the ten outputs from the Networks A and B, and ten nodes in its output layer; one-for

each radar platform. The Center as Class-Cluster Averages algorithm was used to determine the
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Figure 5.16. Performance of Network A for Group A Radar Data
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Figure 5.17. Performance of Network B for Group -B Radar Data
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number of nodes in its hidden layer, layer 1, and their corresponding weights. These nodes were

assigned the gaussian transfer function while the nodes in the output layer were assigned the linear

transfer function. The sigmas-for- the hidden layer nodes were established using the-Scale Sigmas

by Class Interference algorithm while the weights linking the output layer nodes with the hidden

layer nodes set via global minimization of the MSE. Three hundred pattern vectors, 30 from each

platform, were then used to train the network while 1990 pattern vectors, about 200 from each

platform, were used to test the-network. Measurements were then taken of the performance-of the

network as the classification threshold varied. This data is shown in Table E.24 and plotted in

figure 5.18.
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Figure 5.18. Performance of Arbitrator Network for Group A and B Radar Data

From these figures, it can be seen that the categorization performance of the network increased

as the class threshold decreased until the class threshold reached .4 . At this point-the classification

accuracy of the total network was 99.33% for the training data 86.35% for the test data. This

indicates that if the output of a node was greater than .2, there is an 86.35% chance-that a correct

classification was made. If the output of a node was greater than .8, there is a 73;90% chance that

a correct classification was made. The inability of the network to train at 100 % was due to the

overlap of the parameters in -the feature space from different platforms.

5.3.4.3 Summary A summary of the performance of the -networks -trained to classify

the radar data is shown in Table 5.12. A comparison of the performance of the-RBF network and

the Arbitrator network shows-the Arbitrator network's performance was about 2% better than that
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Table 5.12. Radar Categorization Summary
Classification RBF Network % Correct Arbitrator Network % Correct

Threshold Training Test Training Test
.8 87.00 72.29 95.00 73.90
.6 89.67 77.91 98.33 81.43
.4 93.67 82.88 99.33 85.79
.2 93.67 82.88 99.33 86.35
.0 93.67 82.88 99.33 86.35

of the RBF network. This is probably due to the ability to the use of more training vectors to train

networks A and B in the Arbitrator scheme.

5.4 Summary

This chapter began by discussing the data used to train and test neural networks to classify

coded digital communication signals. After describing the methods used to train various networks

to solve this classification problem, the results of the training and testing were then presented. This

chapter concluded with a discussion of the data used to train and test neural networks to classify

radar systems and an analysis of these training and test results.
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VI. Conclusions/Recommendations

6.1 Introduction

The purpose of this thesis was to characterize the Hyperplane and Kernel Classifier types of

neural networks and determine either type could be used to accurately characterize radar signal.

After drawing some conclusions on the performance of each type of network, based the test results

discussed in Chapter 5, this chapter will recommend areas of-future study.

6.2 Conclusions

6.2.1 Hyperplane Classifier In this thesis, Hyperplane Classifier networks were constructed

using the MSE, CE and CFM objective functions. For the communications problem, each network

contained 18 nodes in the first hidden layer, ten nodes in the second hidden layer and two nodes

in the output layer. Under these conditions, the network trained by minimizing the CE performed

slightly better, in the area of classification, -than the networks trained via MSE and CFM objective

functions. The average CE performance on -the training data- was 100% while on the test data the

performance dropped to 81.2%. This compares-favorably with-the MSE performances of 97.16% and

79.7% and the CFM performances of 88.83% and 73.20% for-the training and test data respectively.

Furthermore, the CE algorithm converged about twice-as fast as the MSE algorithm and seven times

as fast as the CFM algorithm. As shown in figures 5.1, 5.2, and 5.3, the CE algorithm reached a

90% accuracy in about 7000 iterations while the MSE and CFM algorithms reached this level in

about 19000 and 50000 iterations respectively. This decrease in convergence time is due to the lack

of a yn(1 - y,,) term in the CE update equations.

6.2.2 Kernel Classifier For this thesis, several different Kernel Classifier networks were

developed to solve the communications signal categorization problem discussed in Chapter 5. Based

on the performance result detailed in Chapter 5, two Kernel-Classifier types of networks were then

constructed to categorize radar systems.

6.2.2.1 Communications Data The-performance of networks trained usilg the Nodes

at Data Points was found to be a critical function of the number-of nodes used in the hidden layer.

As the number of nodes increased -from 0 to 102, the classification performance of the network

increased-accordingly; peaking-at, 100% for thetraining.dtaand-84,90%.for the test data-for 102

nodes. However, for less than 60 nodes, the performance-of the network deteriorated rapidly.

The performance of the networks trained using the Kohonen-Training algorithm were found

to be a function of the both the number of -nodes allocated to the hidden layer and the number of
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P nearest neighbors used in the calculation of the spreads of the RBFs. As the number of nodes

increased from 0 to 81 the classification-performance of the network increase d, peaking at 100% for

the training data but only around 76% for the test data. This is due to the fact that the Kohonen

Training algorithm allocates more nodes to areas in the feature space where there are pockets-of

data. Increasing the total number of nodes in the hidden layer increases the amount of nodes

which can be allocated to each pocket. However, this increase in the number of nodes within these

pockets serves to decrease the distance to the P nearest neighbors. Thus, the spreads for the RBFs

become small and the network loses its ability to generalize past the training data. As shown in

figure 5.6,-this problem can be overcome by using less nodes in the -Kohonen layer. For this data,

the optimum number of nodes was 64. Though the performance over the training data was only

97.94%, the performance over the test data improved to 80.20%.

The performance of the networks trained using the K-means algorithm were also found to be

a function of the number of nodes allocated to the hidden layer. As the number of nodes increased

from 0 to 100, the classification performance of the network generally increased; peaking at 100%

for the-training data and 83.90% for the test data. The performance remained above 80% for both

the test and training data until less than 60 nodes were allocated -to layer 1. At this point the

classification performance of the network decreased rapidly. This is probably due to the grouping

of dissimilar classes into the same clusters. The performance of networks trained using the K-means

algorithm were found-to be somewhat invariant to the number of P nearest neighbors, used in the

calculation of the spreads of the RBFs.

The performance- of networks -trained using the Center at Class-Cluster Averages algorithm

was also found to be ,t function of the-number of nodes rnsed in-th&-idden 'ayer. As'the number of

nodes-increased from 0 to 100, the- classification performance of the network increased accordingly,

peaking-at 100% for the training data-and 84% for the test data. This indicates there was redundant

lata in the training set. Alio, networks trained. in -this manner performed at aperlr-rmance level

of abov . 80%, for bot.. the tre-ning and- test data, as long as tl(, number of nodes remained above

20. This indicates the data in this problem may be-grouped, by cl2ss, intb small-pockets of data.

The performance of the networks-t:ained using i he PNN algorithm were found-tobe a function

of the spreads assgitd to the RBF nodes. As the spreads decreased, from 3-to ,25, the classification

performance of the network increased; peaiing at 100% fci the tiaining data-and- 81.29%-for the

test data. 'TEi performance-of an RBF netw. k, witl. the wei, lits for the hidden layer nodes trained

in-the same manner-atthosefor the PNN, was bund to be-ess of a function of the spread assigned

to the RBF nodes. As shown in figures 5.11 and 5.12; even as the spreads increased to 1.5, the

performance of the RPF network remained relatively, constant for both the training and test data.
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This is due to the weights in the output layer compensating for the poor choice of the spread in

the hidden layer. However, as the spread of the RBFs increased past 1.5, the performance of the

RBF network deteriorated to that of the PNN.

6.2.2.2 Radar Data For this problem, ten different radar platforms had to be catego-

rized from data concerning their electromagnetic signals.

The performance of the standard RBF network developed to solve this problem was a function

of the classification threshold required to assign -a correct decision for the network. For a classi-

fication threshold of .8, indicating the output for the correct node was above .8, the performance

of the network was 87% for the training data and 72.29% for the test data. As the classification

threshold was decreased to .4, the performance of the network increased to 93.67 % and 82.88 % for

the training and test data respectively. This performance then remained constant as the threshold

decreased. The inability of the network to train at the 100% level indicated the overlap in the

feature space between patterns of different classes. The 10% difference between-the performance of

the network for training and test data followed-the general performance degradation found in the

communications problem.

The performance of the Arbitrator network developed to solve this problem was also a function

of the classification threshold required to -assign a correct decision for -the network. For a classi-

fication -threshold of .8, indicating the outputfor the correct node was above .8, the performance

of the-network was 95% for the training data and 73.90% for the test data. As the classification

threshold was decreased to .2, the performance of the network increased to 99.33 -%zand 86.35 % for

the training-and test data respectively. This -performance then remained constant as-the threshold

decreased. Again, the failure of the network-to train a 100 % indicates the overlap in the features

space between -patterns of different classes.

In general, the performance of the Arbitrator network was between 1.6% to 3.5% better

than that of the standard RBF network. This is due to the establishment of the-two subnetworks

to distinguish between smaller groups of platforms, the use bf more training data to train these

networks, an' the of ability of the Arbitrator -network to separate the overlap-between the groups.

However, this-increase in performance for the Arbitrator network required almost three times as

many nodes as that of the standard RBF network. Furthermore, since the two subnetworks were

trained separately, bhe total training-timefor othe Arbit.rator network was-almost-three times that

of standard -RBF network of 45 minutes.
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6.8 Recommendations

From the results found in this thesis, better algorithms need to be developed to set the

spreads of the radial basis function nodes for the Kernel Classifier RBF networks. In order to

optimize the performance of the networks, a trail and error basis was used to select the algorithm,

and algorithm parameters, to set the spreads. A single, adaptive, algorithm to accomplish this

same task could improve the performance of these networks. Also, it may be beneficial to study

accuracies of Kernel Classifier networks developed using the backpropagation algorithms to set the

weights connecting nodes in layer I to nodes in layer 2. In this this thesis, these weights were set via

a global minimization of the MSE using a matrix inversion algorithm. Since this algorithm used

Gaussian Elimination of the rows to obtain the inverse, it is possible that small roundoff errors

could have accumulated in such a manner as to prevent a true global MSE minimization from

being obtained. Another area of research, which-may hold promise, is the use of the RBF networks

to reconstruct functions from past samples. These networks could be useful in signal processing

applications in which a reconstruction of an unknown signal is needed in a-timely manner.

6.4 Summary

This chapter presented some conclusions, based on the test results discussed in Chapter 5, on

the performance of-the Hyperplane -and Kernel Classifier neural networks. For the data-processed

in this theses, it was- found that -the Kernel Classifier networks -could perform at the-same level

as that of the Hyperplane Classifiers and be developed in a-much shorter time period. However,

these Kernel Classifier networks -usually required more nodes. Some areas-of future research may

include the development of algorithms to automatically establish the spreads of the RBFs in the

Kernel Classifiers and the application of Kernel Classifer networks to the problem of function

reconstruction based-on sampled-values.
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Appendix A. Objective Function Analysis

A.1 Introduction

In this appendix, the classification properties of the Mean Square Error, Cross Entropy and

Classification Figure of Merit objective functions will be analyzed.

A.2 Mean Square Error (MSE) Function

This section will show how the mean square error for proper network classification can be

greater than the mean square error for-an improper classification.

Suppose the network was required to make a classification of an unknown pattern into one of

N classes. That is, the neural network was developed such that each output node represents only

one-of the N classes. Let dn be the desired output for the nth node for a given input pattern. The

MSE, for a given input pattern, is then defined as

MSE= N Z(yn - dn)2  (A.1)

Usually during training, dn is taken to-be 1 for the node responsible for a class and 0 for the rest of

the output nodes. Specifically, assume that, after training,-a test pattern is applied and the correct

node on-the-output layer has the-highest activation. In this case the maximum MSE is

MSEmax. - " (A.2)
N

This occurs when the desired node produces a 1 and all of the other nodes produce activation values

very close to- 1. That is

N 1 N-1

M-(y.-d.) ( 1)" + E'(1- 0)1 (A.3)
n-=1 n=1

This reduces to

MSE,,,. = E (1) (A,.4)
n=1

Simplifying,
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MSEm = - 1 (A.5)

Next, assume that, after training, a test pattern is applied and an incorrect classification is

made. That is, a node representing an incorrect classification in the output layer has the highest

activation. In this case the minimum MSE is

MSEmi. (A6)
=2 N

This occurs when the output for the correct node is approximately .5 and the output for a single

incorrect node is approximately .5. The outputs for the rest of the nodes are zero. That is

MSEmi, = "dh) 2  (A.7)

Substituting the output values gives

MSEmin [(I - .5)2 + (2) .512J (A.8)

which simplifies to

MSEmin (A.9)

Thus, under certain conditions, the MSE for a cqrrct ri'p,,%nse, in whichhe correct output

node, is.the hibhet, coji be greater than the MSE for -an incorrect response As the number of

classes-becones very large, thcn-MSrEmna for a correct, c , ipoise approaches A. while MSEmin for

an incorrect response appro,.'hes 0. Therefore, tie-iatio oif MSzrm, to MS2,j, is

im" SEm , _ (A.10)
MfSEmi,, 0'

A.1 Cross ,niropy (GE) minction

ThiSse on-*iil show how che.crosentropy for proper network classification.can be greater

-thrn-the,-cross-entropy 4or-an ipnopcr --cassification.
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Suppose the network was required to make a classification of an unknown pattern into one of

N classes. That is, the neural network was developed such that each output" node represents only

one of the N classes. Let dn be the desired output for the nth node for a given input pattern. The

CE is then defined as

CE= - E _[dn log(yn) + (1 - d) log(1 - Y,)] (A.1)
n=1

Here during training, dn is usually set to 1 for the node rcsponsible for-a class aud'to 0 for the~rest

of the output nodes. Now, assume that, after training, a test pattern is-applied and the corree

node on the output layer has the highest activation. In this d se-the iimaxmanm CEis

CR.maz r- 00 (-A.12)

This occurs when the correct classification node produci a 1 and at !ezst one of~Lhe other nodes

produces an activation value very close-tol. That is

N

n=1

Substituting the values -for the outputs

CE, noz--[1 log(')-+ (1)log(l - 1)] (A.14)_

or

CEm =. oo (A.5)

Next, -assume that, after training, a test pattern is applied and an- incorrect -node on the

output layer has the highe3t activation. In this case the -rrinimum-CE is

CEm, =- 21og(2) (A.16)-

This occurs when the output-for the correctnode is approximately .5 and-the output for a-single

incorrect node is-app:oximately .5. The outputs for the rest of the nodes are zero. That-is
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N1CE=" -- E"[d. log(y.)"t+ (1 - dnlog(1 - y.)] (A.17)

Substituting the assumed values for the outputs

Cmin = [I log(.5) + (1 - 0) log(1 - .5)] (A.18)

which simplifies to

CEmi, = 2 log(2) (A.19)
N

Thus, under certain conditions, the CE for a correct response, in which the correct output

node is the highest, can be-greater than the CE for an incorrect response. The ratio of CEm,, for

a correct response to CEni, for an" incorrect response is

CEmaz
iMN- - -oo (A.20)

CEmin

A.4 Classification Figure of Merit (CFI') Function

This section will show how the CFM objective function seeks to alleviate the classification

error associated with the MSE and CE objective functions.

Suppose the network was required to make a classification of an unknown pattern into one of

N classes. That is, the neural network was developed such that each output node represents only

one of the N classes. The CFM objective function is then defined as follows:

N
CFM N - 1 1 + e (A.21)

where n, = yc - y,,

ye = response of the correct node

y,= response of-the-incorrect node

N = total number of output nodes or classes.

a = sigmoid scaling parameter.

P = sigmoid discontinuity parameter.
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= sigmoid lateral shift parameter.

Specifically, assume that, after training, a test pattern is applied to the network and the

correct node on the output layer has the highest activation. In this case the minimum CFM is

CFMmin - CFM.(O) (A.22)

where

CFX(6n) (A.23)1 +

This occurs when the correct output node produces a 1 and all of the other output nodes produce

activation values very close to 1. That is

1 N
N = 1 1 '(A.24)

n=lncI

but here 6b = y, - yn 0 and therefore, CFM.in simplifies to

NN

-CFMmin- 1 1 1 N A.5
1 E. +C = N + CFM(O) (A.25)

which can-be written as

1
CFMmn .. in (N- 1)CFM(0) (A.26)

This simplifies to

CFMmin = CFM(O) (A.27)

Next, assume that, after training, a test pattern is applied and an incorrect node on the

output layer-has the highest activation. In this case the maximum CFM is

CFMm n= - -1 [(N - 2)CFM.(1) + CFMn(O)] (A.28)
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This occurs when the output for the correct node is approximately 1 and the output for one of the

remaining nodes is approximately 1 while the rest are zero. For the nodes which have output very

near zero

CFM(6n) - 1 - 1 + 1 -CFM(1) (A.29)
1 + e(PcC + )

The equation for the CFM can now be written as

N-i
CFM= N -- 1 1 + e-P+C) + 1 + e[-P(O)+] (A.30)

n=in;c

This can be written as

1 N-i
CFMma= -. -[ CFM(1) + CFM(O)] (A.31)

Expanding via the-summation

1
CFMmaz = N - 1N- 2)CFM(1) + CFM (0)] (A.32)

Now, taking the limit as N approaches infinity

CFMma , CFMn(1) (A.33)

For large P, then CFMma; x 1-. Thus, the ratio of CFMma, for a correct response to CFMmin

for an incorrect response, when ¢ = 0 is

CFMma

= 2 (A.34)CFMmin

Comparing this to the CE and MSE functions, we find that the CFM function has less region

in the feature space where an incorrect classification will be made.
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Appendix B. Hyperplane Classifier Parameter Update Equations

B.1 Introduction

In this appendix, the update equations for each of the objective functions will be derived.

These equations will be based on a network with the topology defined in figure 3.3.

B.2 Identities

In this section, the identities needed to establish the update algorithms will be derived. Con-

sider a feedforword artificial neural network as shown in figure 3 with the following paramenters:

Layer 0, input layer, has K possible nodes

Layer 1, first hidden layer, has L possible nodes

Layer 2, the second hidden layer has M possible nodes.

Layer 3,the output layer, has N possible nodes.

Let the weights between layers'be defined as follows:

wkl = weight linking node k in layer 0 to node I in layer 1.

w,, = weight linking node I in layer 1 to node m in layer 2.

Wmn = weight linking node m in layer 2 to node n-in layer 3.

Let the offsets for the nodes in each layer be defined as follows:

a= offset for node I in layer 1.

o-= offset for node m in layer 2.

o= offset for node n in layer 3.

Let the transfer function for the nodes in each layer be as follows:

Layer 0 - Yk = xk Outputs are same as input features.
K

Layer 1 - yj = [1 + e-(k=, wk,Yk+,)].-1

Layer 2 - yIm = [1 + e(Zii Wm.I,+Cm)]_,

Layer_ 3- ,. 1 + M=

Now, looking at the node outputs for each of the layers, the following identities need to- be

established:

OW)MNq OWLM' OtWKL ' OWL'M OIOL OWIKL
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Starting with yN, the output for a node in layer 3

-YN- (B.1)
8WN WMN+

which expands to

- - [1 + (~te-( mNym+N)]. a [eM(=M= WmNi]m+GN)] (B.2)
-9WMN a9WMN

which simplifies to

8YN -[+ W.N.+N)]2[ -CF WbmNYm+ON)]_'9

o[ =-[m+e M + _e-M - E NYr + CN) (B.3)aWMN -- WM ] -( 0 M=1

This equation can be written as

IN M M

y9W M N = [1Me( ,= i W ,,N ,, + N)l_ ( Z , 1 w , N Y , + a N )I_ i[e ( W ,N i ,+ UN ) 1 y M  (B .4 )

which finally simplifies to

OWMN - YN(1 -- YN)YM (B.5)

Similarly, using the same arguments as above

tWM = yM(1 - YM)YL (B.6)WLM

and

OIL = yL(1 - YL)YK (B.7)
OWKL

Now let's find OYN
OU'IM"

OyN a ( (+-e-OMN) - 1  (B.8)
OWLM OWLM
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where

M
N E WmNYm + ON (B.9)

m=1

therefore

8 WLM a - M (1 +  
(B.10)

which expands to

oYN,- - (I + e_,N)_2  _(B.11)

OWLM O WLM

this, in turn, simplifies to

-WM (1 + e-O-N)-2(e-I-N) a (B.12)aWLM WL

which can be written as

8YN M
SYN(1 - YN) -(E wmNYm + aN) (B.13)19WLM WM-=

which simplifies to

-YN_ = YN(1- YN)WMN OyM (B.14)
awLM 9tbLM

Substituting equation B.6 for ay" gives

8 YN
= YN(1 - YN)WMNyM(1 - YM)YL (B.15)

OWLM

Similarly
aym-

- = YM(1 - YM)WLMYL(1 - YL)YK (B.16)
OWKL

Finally, let's find OWK
OWKIN"

---K 9 -  -
(B.17)

OWKL 9WKL

B-3



where

M

ON. WmNYm + Upj (B.18)
m=1

therefore

OYN a (1 + e-OmN)-  (B.19)
OWKL 19 WKL

which expands to

OYN = -(1 + e-N)-2 --- (e- N) (B.20)
cWKL 9WKL

which further expands to

(9yN + - (-2eON 9 M
= (1 + - )-2 (-N a__( WmNYm + UN) (B.21)

aWKL WKL m=l

this simplifies to

O N = YN(1 - YN) , WKL (B.22)

Now substituting from equation BA6-for a"" provides

= Y(1 - YN) EWmNYm(1 - Y.r) WLmI/L(l - I/L)I/K (B.23)
Fialy larw

Ocar 
8

0OM DUL"

aOYN - -_LN[1 + e-(EM=I WmNYm+aN)]-- (B.24)

which expands to

aIyN -[ + e-(Zn=1 ,Wmmo,)-+U_) (B.25)
ao-N ao'N

which simplifies-to
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'Y -[1 + e-,,=1 '+)-[--~=, ,,N )]. ., WmNYm + C'N) (B.26)
ON L90- m=1

This equation can be written as

aO= [1 + W-( M N2"+N]-[ M( = -E' WmNS/m+CtJ)] (B.27)

which simplifies to

0YN = YN(l - YN) (B.28)

Similarly, using the same arguments as above

M /M(I - y ,) (B.29)

and

,yLyn(1 - YL) 
(B.30)

Now let's find OL.

- M(1 + CIN)- (B.31)

where

M

tmN = Z WmNYm + CN (B.32)
m=1

therefore

= _ (1 + e_,N)1 (B.33)
OUM O0"M

which expands to
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yN -(1 + e-'N')-.2 . -9 (B.34)

this, in turn, simplifies to

OlyN - (1 + e-() 2 (e-mN)-(,,) (B.35)
aoOUM

which can be written as

ON Y,(1 - YN) - ( _ WmNYm + c,) (B.36)

which simplifies to

O-Y = YN(1 - Y O)WMN 1-hM (B.37)

Substituting from equation B.29 for O provides

=YN = YN(I - YhN) WMNYM(I - YM) (B.38)
OO-M

Similarly

ay- = hYM(I - YM)WLMYL(i - YL) (B.39)CaL

Finally, lets find a'

80YN _ 0

wyN e L .9 (1 + e-Nm)-  
(B.40)

where

M
4ONm WmNYm + (YN (B.41)

rM=I

therefore

Oh/NO (1 + e- -  (B.42)
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which expands to

OYN = -( + C-O.N)- 2 - (B.43)

which further expands to

'9 = (1 + e-¢N)2(e- N)- (ZWmNYm 4 -- N) (B.44)
M=1

this simplifies to

OYN M e.

L YN(1 - YN)( W.N (B.45)

and thus, substituting equation B.39 for 27 provides&at,

= YN(1 - /N) Z WniNYm(1 - Yi) WL.YL(1 YL) (B.46)

With these identities, the incremental update equations for networks implemented using the

MSE, CE and CFM objective functions can be found.

B.3 Mean Square Error (MSE)

The inczemental update rules for the network parameters can be found by minimizing the

MSE function with respect to the network parameters for an instantaneous pattern. The MSE

function is defined as

N

MSE =1 (y - dn) 2  (B.47)
n=I

The update equations for the parameters will be

+ OMSE (B.48)
Wi I wt4- 7O(WMN

and
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OMSE (B.49)
WLM -LM - q1 OWL(4

and

WO WKL - 7 aMSE (B.50)w+L =t°KL 7 WKL

and

a+ OMSE (B.5)

and

OMSE (B.52)If = I - 7 76M

and

aLUL ?1OMSE (B.53)

Here q is constant which determines how much each parameter is updated for a given iteration.

Taking the derivative with respect to the output layer weights

OMSE E(y _ .)] 2  (B.54)
OWMN -WMN N =1

This simplifies to

OMSE = 2 OYN (B.55)
OtWMN - -(YN - dN) (5

Substituting B.5 for y provides

9MSE 2
OWMN yN dN)y.(1yN)yM (B.5t)

Now let's find OMSE
OWLM "

B-8



OM SE a._ _1 N

9MSE - d.)' .57)
OWLM OtULA N

Simplifying

0MSE 2 N 0y(= V E (Yn - d.)0-
OWLM n= n--- (B.58)

Substituting equation B.15 for provides

I9MSE _2 N

OWLM N (Y - d,)y.(1 - yn)wA.yA(1 - YM)YL (B.59)

Finally, let's find OMSE

OMSE a[1 N

T _( - dL)] (B.60)
OWKL OWKL N=

This simplifies to

OMSE 2 N (. y.

OWKL = " - ynd) -KL (B.61)
OWKL n=1l9K

Substituting B.23 for Oy" providesOWIC1

OMSE 2 N M

5WKL = F Z (yn - dn)Y(1- yn)[ Wmn(ym(1- Ym)WLmYL(l - YL)YKI (B.62)
n=l m=1

Now lets find the OMSE

OMSE a 1 N

-N- "N N .(yn -d)]
2  (B.63)

n=1

This can be written as

OMSE 2 OYN

UN 7 (YN - dN) (B.64)
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Substituting B.28 for 8 providesO

OMSE 2
= ( tiN) (B.65)

Now lets find the OMSE

N

OMSE( - .1 - (B.66)
,MT [FM

n=1

This can be written as

OMSE 2 N  ,9YN
= F N -dN) (B.67)

eam ~n=l 9C

Substituting B.38-for .1 provides

OaMSE N
O7M E(yn - - yn)WMnYM(1- YM) (B.68)

0 M  Nn=1

Now lets find the OMSE

OMSE =  a I E yn "dn)] 2  (B.69)

n=1

This can be written as

O9MSE _2 N (Y

Sa = E (y. -dn) - (B.70)

Substituting for B.46 for OL provides

IV M

OMSE _ 2 N
ML - E(yn d,,)y1 (l _Yn)[t WmnYm(1 -ym)WLmYL(1 - YL)] (B.71)

n=l m=1

Therefore, substituting the appropriate derivatives into the- update equations for each parameter

provides the learning rules for a network implemented using the MSE objective function. By
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defining Yj= 2C/N, where C is a constant, the update equations for the parameters will be as

follows:

MN - WMN - n(YN - dN)y]¢(1 - YN)YM (B.72)

and
N

W+M = WM - (y - d.)y.(1 - yn)wMnyAf(1 - (B.73)
n1=1

and

N M

WKL WL - y( - d.)yn(1 - y)[ Wmnym(1 - Ym)WLmYL(1 -YL)YKI (B.74)
n-1 rm=1

and

- -N - dNv)yN(1 - YNv) (B.75)

and

N

a+ =0. - ?E(y. - d.)y.(1 - y.)wM.yM(1 - -M) (B.76)
n=1

and

N M
+ -.- 7 E(y. - dn)yn(1 - yn)[E WmnYm(1 - Ym)WLmYL(1 - YL)] (B.77)

n--1 m=l

B.4 Cross Entropy (CE)

The incremental update rules for the network parameters can be found by minimizing the

CE function with respect to the network parameters. The CE function is defined as

CE - [dnlog(yn) + (1 - dn)log(1 -- y,)] (B.78)
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Letting j be a constant which controls the learning rate, the update equations for the parameters

will be as follows:

VMN =WMN -T BCE (B.79)
MBWMN

and

+L WL-? CEEWLM (B.80)

and

WKL W 7CE (B.81)w+L = L '7WKL

and

N N o E (B.82)

and

BCE
U M E (B.83)

and

BCE

OL 01 - B 0-'UL (B.84)

First let's find OCE

aCE 1 0 N
BE= . . B [d. log(y.) + (1 - d.) log(l - y,,)] (B.85)

OWMN N BWMN=

The derivative of the log function is

D.[log.(u)] = Du (B.86)
ulIn(a)DZU

Thus
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aCE I a aW
OWMN = ydt log(yN) + (1 - dN )a log(1 - yn)] (B.87)

Taking the derivative provides

OCE 1 dN Oyv (1 -dN) ( - (B.88)
aWMN yjv In(1O0) OWMN (1- YN)In(10) (B.88)

This can be written as

OCE 1 dN (1- dN)] aYN (B.89)

OWMN n(1O)[Y (1- YN) 1 OWMN

This simplifies to

OCE I . (dN -YNdN -YN + yNdN) CYN (B.90)

OWMN =  N ln(lO) yN(1 - YN) ]OWMN

Which in turn simplifies to

OCE 1 (dN - YN) IOrIN (B.91)
WOMN -Nn(10) yN(1 - YN) 1 1WMN(

Substituting equation B.5 for OYN gives

OCE 1 [(dN - YN)l ( 1
7w - = - n00) 1 ,N - YN,)YM (B.92)
OMN -N ln(1O) ypN(l -yN)

This in turn simplifies to

OCE _ (dN - YN)YM (B.93)

OWMN N ln(1O)

Similarly

aCE 1 (dN - YN) ] 9YN (B.94)

aUN N ln(1o) yNv(1 - y) a

Substituting equation B:28 for P-M providesOOaN

oCE 1 r(dN - YN) ][YN(1 - N)(B.5)

OOWN -N ln(O) yN(] -y-Y)
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which simplifies to

OCE (dN-YN) (B.96)

TaN N In(10)

Now let's find OeP
OWLM"

OCE _ O N
oWLM N Z N [d. og(y.) + (1 - d) log(1 - y,,)] (B.97)

TW-LU OWLUn=1

Thus

OCE 19 a o -y)9WLM N '[d.,.j log(y.) + (1-d.) log(l-yn)] (B.98)
OWLM N n=I LUaL

Taking the derivative provides

9CE = N _d, yN - (1-) - 9(1- yN) (B.99)

OWLM - 1 y,= ln(10) OWLM (1 - y,)ln(10) OWLM

This can be written as

8CE 1 '-y n(1-d) 1 --8y(.10
OWLM Nln(d) -_L J -9, (B.100)

This simplifies to

aCE 1 E[(-d - yn~d, - Yn + ynd,). y

[ ] OY (B.101)iw=L 71-n (1-0)nI Y I- y,) J OWLM

Which in turn simplifies to

OCE - I ( -y)] OY. (B.102)

WLM -7- n(10) E.-=LY,,(l - y) OWLM

Substituting equation B.15 for ay" providesOWL M

OCE 1 N10 -1 .][y.(1 - y)wMYM(1- YM)YL] (B.103)
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This can be written as

OCE N1 (dn - yn)wMnYAI(1 - YAf)YL (B.104)
aWLm Nin ---1

Similarly

OCE 1 r(dn Yn)I y (B.105)0OM - ln(10) , yz- y)Jay,1-y,.)05)

Substituting equation B.38 for .,. provides

OCE 1O -N Idnl -_ yn) [Yn(1- yn)wMnYM(l- YM)] (B.106)
090M N In(1O) E= T,(l -)

This simplifies to

OCE 1 N

8oM =  ln1O0 E(dnYn)WMnyM(1 -yM) (B.107)

Now let's find OC

N

OCE~ a N
aWE= -- . dn)lo0(1-y) (B.108)
W"L N,"i - _n=4

Thus

aCE 1 N a
OwK, -N _[dn_  -log(y) (1 - d,)w log(1 - Y)] (B.109)

Taking the derivative provides

w9CE 1 N dn Oyn (1 - dn) 401 (B 110)
=n7 E ln0) OWKL + (1 - y) ln(10) 9WKL

This can be written as

-CE 1 N I d (1 -d) 1r ey1  (B.111)
awK =  Nln( =1) n yn (1-yn) awKL
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This simplifies to

OCE I N (d ynd- Y. + Y.dd) B.1

Which in turn simplifies to

OCE 1 V r(d - y )i 0Yn (.n1)
0WKL N ln(1o) ELYL (1 -Y) 9wKL

Substituting B.23 for '9yL givesOWKL

N

OCE _ 1 NN d y.MKL N=(1O) .L$v( -Yyl - y)[- wmnYm(1 - Ym)WLmYL(1 - YL)YK] (B.114)OWKL N In-(0) 'Y(1 -n
n=1 M=1

This in turn simplifies to

OCE 1 N M

OwXL- Nln(10) E(d"- Y"rE Wmnym(1- Ym)WLmYL(1 -yL)YKI (B.115)
n=I ,~

Similarly

OCE 1 N (d .,y) y" (B116)
ONL N ln(lO) Yn (1- Yn) O9aLn=1

Substituting equation B.46 for O" provides07L;

OC 1 N ( y)MOCE E 1 (dn -Y" y(l yn)tE wm.nym(1- ym)WLmYL(1 -yL)] (B.117)

5o n=1 7n=1

which simplifies to

OCE 1 N M (.18OCE = ln 10) Fd-yn)[ Wmnym(1-- Ym)WLmYL(1- YL)] (8.118)
OUL - ln(1)-1
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Letting q = C/[Nln(IO)] where C is a constant, the L. late equations for the network parameters

will be

M = WMN + 11[(dN - !/N)yMI B.19

and

N

WPM =WLM + 1 Z"[(d,, - yn)wMnyM(l - YM)YL] (B.120)
n=1

and

N M
WkL = WKL +71(dn- Y)[E Wmnym(1- Y.)WLmYL(1- YL)YK] (B.121)

n=1 m=1

and

Y + = o + ,i(dN - YN) (B.122)

and

N

M = oj + 77 Z(dn -- Yni)WMnYM(1 YM) (B.123)
n=1

and

N M

Lt = L+ ?7Z(dn -Yn)[Z Umn(ym(1 Ym)WLmYL(1 - Yd) (B.124)
n=1 m=1

B.5 Classification Figure of Merit (CFM)

The update rules for the network parameters can be found by maximizing the CFM function

with respect to the network parameters. The classification- CFM objective function is defined as

N

CFM = N- c[(i + e-P&/+P1/+)] - 1 (B.125)
rn=ln!Ac

where
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y, = output of an incorrect classification node

y, = output of the correct classification node

a = a sigmoid scaling parameter

= a sigmoid discontinuity parameter

= a sigmoid lateral shift parameter

Furthermore, let

1

z'= 1 + e(-io+P I+() (B.126)

Here z,, is a function of both the correct and incorrect node outputs. Therefore, the CFM objective

function can be-written as

NCFM= 1
CFM - Z L azn(y,,y,) (B.127)

n=1niC

Letting q be a constant which controls the learning rate, the incremental update equations for the

parameters can-be found from-the following equations:

= WMJN + OCFM (B.128)w~lv= wjv , 9WMN

and

OCFM (B.129)

WLM= L OWLM

and

L OCFM (B.130)
w+ = WKL + 7(BWKL

and

+CFM (B.131)

and
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+! OCF M

= FOtsM (B.132)

and

= T +OCFM (B.133)

Now, taking the following derivatives

Szil a [ + e(-/c+PS-+)]-l (B.134)

Simplifying

azn a_
= -1- + e( yc+P y "+( ) ]-2 a e(_Py.+Py.+() (B.135)ay" aYn

This can be written as

=zn =-ge(-Pyo+Py"+()[1 + e-(py.+PY"+C)] - 2  (B.136)

which simplifies to

ry-- = -pz, (1 - zn) (B.137)

Similarly
= a

Simplifying

z = - + e(-py°+#Y"+()]-2 ' a-[e(-Py+Py".+)] (B.139)

This can be written as

(gz...n = pe(_Oyo+Py.+()[1 +I e(-Py.+py.+()] - 2  (B.140)
Oy

Simplifying again
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-5-= fz.(1 - Z.) (B.141)

First, let's find the update rules for a weight linking node M in layer 2 to an incorrect classification

node Nin layer 3, WMN.

FM . of N 8z" (B.142)
O&WM N - Ni' OWMN

But ZN = f(ye, y,) therefore,

OCFM a 0ZN 8YN (B.143)

DWMN = N - 1 C'YN OWMN

Substituting equation B.5-for 8 and equation B.137 for providesawmt4 DYN

OCFM -a1
WMN -(--)zN(1 - ZN)YN(1 - YN)YM (B.144)

Similarly

OCFM _ a DZN OYN (B.145)
7N N 1 OYN D0N

Substituting equations B.28 for O and equation B.137 for 8 -'N provides, for an incorrect classi-OON OYN

fication node,

DCFM _ _

DUN = (N 1 )ZN(1 - ZN)YN(1 - YN) (B.146)

For the correct classification node, the OCFM needs to be found to maximize the CFM objective

function, where

DCFM 01 N 8z, (B.147)
DWMC N - I n= O(.Mn=ln c

This can be simplified to

NOCFM - aC 8zn OyC
DkMC n.N- 1J OWMC (B.148)

n=Blc
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Substituting equation B.5 for B and equation B.141 for 0 providesaw,%c Oyc

OCFM N

OWAc =  1 E z.(1 - za)yc(1 - YC)YM (B.149)
n=ln#c

Similarly

OCFM = a N oz, Oy c
Occ N-Io -c (B.150)

n=) R*C

Substituting equation B.28 for O-c and equation B.141 for -a' provides

OCFM t N
=N- E zn(1-z,)YC(1-YC) (B.151)

fl=ln;Ic

Now let's find the 8CFM

____ _ 1azM

OCFM a N _ OMZ (B.152)
OWLM N - 1 L(n.2

This can be written as

OCFM = N Z. ( ,, 1z, 19Y,:
OWLM = ( - 1 O"WLM 8C _ _LM + (B.153)

N - 1 =It 9n1WM O 9L

Substituting equation B.15 for Oyw andWL and equations B.137 and-B.141 for and
Owzlet F.81 yn Oy.

gives

OCFM af6 N
owLM N - 1 E z.(1-z.)[yo(1- Yc)WM -yn(l -yn)wM..yM(1-YM)YL (B.154)

nmln~ec

Similarly

OCFM a N az, 8y azn Oy
a - N 1: ( -- n 11Y. + -- ) (B1155)0_,M_ - 1 = ln°e" 0~ Oy, 0-

-Substituting B.38 for O and O_' and equations B.137 and B.141 for " and O" gives0
aM 0GYM Oy hOy
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OCGF M _f_ N
z. ( (N - y.c) wm - y.(1 - - yAf) (B.156)

Now let's find the OCFM

O F M - A N

WPM. =  C N - z,, (B.157)
6WKLfl~ NO n WKL

This can be written as

OCFM = t a Ozn 19Y. +Oz Oy. (B.158)7witr N-i 1 Y .=aOy wKL + OM: OIWKLc~

Substituting equation B.23 for OL and O'c and equations B.137 and B.141 for a. and -I).
OWKL OWKL Oz, Oyc

gives

OCFM ._cr/_ N M

wKn -N-1i Zn(1-n)[Y(1-Yc) EWmc
ln=lec m=1

M

- y.(1 - yn) L Wmn]ym(1 -y)WLmYL( -yL)YK (B.159)
m=1

Similarly
OCFM 01 .€ z . y" az OyC (B.160)

jO8 L - 1 = Y OyO + ft: iaL

Substituting B.46 for 2yl. and By, and equations B.137 and B.141 for " and 8 gives
OUL OOL Oy. Oyc

OCFM N M

a0l - N-1 E Z,(1 - Zn) [Ye(1 - Yc) E W..

n=ln#c m=1

M

- y.(1 - y.) W n]ym(1 - ym)WLmYL(i - YL) (B.161)
m=1

Thus, if 77 = Ccfl/(N - 1) where C is a constant, the update equation for a weight linking node M

to an incorrect classification node N, uMN is
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W+fN = -:fN - ?1ZN(1 - zN)YN(1 - YN)YM (B.162)

and the update equation for the offset of an incorrect classification node N, aoN, is

A = a7; --7 ZN(1 - ZN)YN(I - YN) (B.163)

The update rule for the weight linking node M in layer 2 to the correct node C in layer 3 is

N

W+C = ,C +, E Zn.( - z.)yc(l - yc)yM (B.164)
n=ln#c

The update rule for the offset of the correct node C in layer 3 is

N
Cc = ac +n 7/ (I - z.)y¢(1 - yO) (B.165)

n=lft*C

The update equation for a weight linking node L in layer 1 to node M in layer 2, WLM as

N

WLM = 11+11 E zn,(1- zn)[y.(1- Yc)WMc - y.(l- y!)wMn]YM(l- YM)YL (B.166)

while the update equation for the offset of node-M in layer 2, aM is

N

a+m= + j z.(1- n)[y.(1-Ye)wMC -y.(1-yn)wMn]YM(1-YM) (B.167)
n=ln ©

The update equation for a weight linking node K in layer 0 to node L in layer 1, WKL is

N M

wKL - WL + 77 E Z(l- Zn)[Yc(1- Yc) E Wmc
71=In c M1=1

M

yn(1- Yn) Wmn]ym(1 - Y.)WL.YL(1 - yL)YK (B.168)
m=1
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while the update equation for the offset of node L in layer 1, UL. as

N M

= + Zn(1 -zn)[Y(1 -ye) EW.,

m=

-Yn(l -Yn) Fi Wmn]Ym(1 Ym)WLmYL(1 -YL) (B.169)
M=I
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Appendix C. Parzen Window/Radial Basis Function Relationship

C.1 Introduction

This appendix will discuss the relationship between the Radial Basis Function and Parzen

Window approach to the estimation of a probability density function from analysis of a set of data

points.

C.1.1 Density Estimation The Parzen Window estimate of a conditional probability density

function, P( ]Gj), provides a smooth estimate of the density function from a set of sample data

points by assuming that each value of the data occurring in the sample set also raises the probability

of any value occurring close to that value of the data. By centering a kernel function at each of

the data points, the final value of the estimate can be obtained by summing together all the

contributions from each value of the sample data.(8:162) That is the Parzen Window estimate has

the form

1 NJ 1 -
P(t/Gj) = T E hK()[h) (c.1)

where

K = the number of dimensions

Nj = the number of data points in class J

h(Nj) = a function of Nj commonly referred to as the window width.

O(X) = the kernel estimate function.

Thus, to form a Parzen Window estimate of the density function from a set of known points, a

kernel function and a window width have to be chosen. While the window width can be somewhat

arbitrary, the kernel function must fulfill several conditions.

C.1.2 Conditions For the Parzen window estimate to work, the following conditions must

hold true (7:174):

fo_ ¢(u)du = 1 (C.2)

J' I(u)Idu < oo (C.3)
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Supl¢(,u)I < o (CA)

lim luP(u)l = 0 (0.5)

lim hK (N) = 0 (0.6)
N--oo

lim NhK(N) = oo (0.7)
N-co

lim NhK(N)= oo (0.8)
N-co

If all these conditions are met, the Parzen estimate is asymptotically unbiased and consistent at all

the continuous points-of P(:Z/G) (7:173-175).

C.2 Kernel Seleciion

One type of kernel function which satisfies these conditions is the gaussian radial basis function

2 [EK !?,

q5(I1 - .11) -- [27o 2h(N)] -  e-'2k=x - ), (0.9)

where

-= Constant defining the window width

h(N) = N-'r- = a function of N

N = Number of data points

K = Ninber of dimensions.

C.3 Proofs

The proofs that the gaussian radial basis function meets the requirements for the Parzen

Window are shown below. In these proofs, the following substitutions have been made to simplify

the algebra. Let
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1 (C.10)
2o.2h(N)

and

Uk. (k - =k.) (Xk. -ik)2 (0.11)

and thus

O(11 - X-11) a (-)-e-t_, *k.)'] (C.12)

The first condition the kernel function must meet is that

.. (u)du ... du,,- 1 -(C.13)

substituting the equation for the kernel provides

j... (u)dul ... duK = ( ... e-E=, G(u'Iu)du1 ... dUK (0.14)

which can be written as

q0(u)dul .. .dUK =(r)4[2 e-a(ul) 2 dul] ... [2] c ra(CK dUKI (0.15)

now from (25:640)

Se-a(u) 2 du = (C.16)

substituting into equation 0.15 provides

)- K 2- =1 (C.17)

Therefore the equation 0.2 is satisfied. The second equation that must be met is that
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00 l¢(.u)ldu < oo (0.18)

substituting the equation for the kernel function provides

?r) J0 00.j Ie(Z' , a(uh)2iIdul ... .dUK <o (019

Since equation 0.2 is satisfied, then so is equation 0.3. Equation 0.4 describes the third condition

that must be met. For this condition, the supremum, or least upper bound must exist. That is

Supl¢(u)j < 00 (0.20)

Substituting for I0(u)I reveals

SUPI4O(uI = SupI(")- [EY. k)J (0.21)
a

The maximum value for I0(u)l is unity. Therefore

SUPIl(U)l = 1 < oo (0.22)

Thus, equation .4 is satisfied. Equation 0.5 describes the fourth condition that must be met. For

this condition

lira lU(u){ = 0 (0.23)

Substituting the equation for the kernel, and suppressing the constant, (r/a) - K/2, provides, for

the Kjh dimension

lim luko(uk)l = Jim luke-a(uk) 21 (0.24)

now

• Uk

lim Iuke-a(uk[ = l [ I (0.25)
Uk-CQ Uh-co aUk).'I(.5

using L'Hopital's rule
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lm uk -. i 1
ca(Uk) 2  - 2aukea(uk)2 = 0 (0.26)

Thus, this condition is satisfied. Equation C.6 describes the fifth condition that must be met. Here,

lir hK(N)= 0 (C.27)
N-oo

must be satisfied. Substituting the equation for h(N) provides

in hK(N) = m. N = N K (C.28)
N-00 N-co

Simplifying the equation shows

lim hK(N) = lim N - ' = 0 (0.29)
N-co N-oo

Thus, this condition is satisfied. Equation C.7 describes the sixth condition that must be met. For

this condition,

lim NhlK(N) = o (0.30)
N-co

must be met. Substituting the equation for h(N) provides

lim NhK(N)= lim N(N'= )K (0.31)
N-oo N- o

This can be written as

lim NhK(N) = lim N"99 = oo (C.32)
N--o N-co

Thus, this condition is met. Equation C.8 describes the seventh condition that must be met. For

this condition,

lim Nh(N)2 = o (C.33)
N-oo

Substituting the equation for h(N) shows
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lim Nh(N)2 = lim N[(Ni)2]I ¢  (0.34)
N-oo N-oo

This can be written as

lim Nh(N)2 = lim N(N - ' 2) (C.35)
N-.oo N-OC

which can be simplified to

lim Nh(N)2 = lim N"98 = oo (C.36)
N-co N-oo

Thus, this condition is fulfilled.

By meeting these conditions, the guassian radial basis function can be used to estimate a

conditional probability distribution from a set of sampled points. In this estimate,

N, !k,)22 Njk~ 1V _(AN)
P(;/Gj) = e ][2rah(N)] (C.37)E[7(N)][27ra(h( "

now, since h(N) ,N 1 even for large values of N, the equation becomes

PC IG.)= 1 (2k 2 2 (C.38)
j-l
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Appendix D. Kernel Classifier Network Training Algorithms

D.1 Introduction

In this section, the training algorithms for a radial basis function network will be derived.

Consider the feedforward artificial neural network as shown in figure 3.7 with the following

parameters:.

Layer 0 - input layer with K possible nodes

Layer 1 - hidden layer with-L possible nodes

Layer 2 - output layer with M possible nodes

Let the weights between layers be defined as follows:

wi -weight linking node k in layer 0 to node I in layer 1.

wimn -weight linking node I in layer 1 to node m in layer 2.

Let the transfer function for the nodes in each layer be as follows:

Layer 0 - yk = k = identity function

Layer 1 - yj = e- [E k2= 2C]
2 J = gaussian radial basis-function

Layer 2 - ym = Wmiy = linear function

Thus the parameters of weights tiL and WvM, and the-spreads 0 L will characterize the network.

D.2 Incremental MSE Minimization

One method of determining these network parameters- is to use the method of incremental

backpropagation according to the MSE objective-function defined here as

1M
MSE M (ym - din) 2  (D.1)

m=1

A network developed using the MSE objective function seeks to have a minimum error over

all patterns with respect to the network parameters. The -incremental update equations for the

network parameters are defined as

+ (9MSE

WLM wLM - ' - (D.2)
19WLM

and
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W+ OMSEKL -KI OKL (D.3)

and

Kh L - OMSE (DA)

~~. 0 KL ' 0

Here q is a constant which controls the rate of update. Let's first minimize the error with
respect to a specific weight, say WLM, linking node L in the hidden layer to node M in the output

layer.

OMSE a 1 )2-MS 1M (Ym - d.) 2 ]  (D.5)
OWLM OWL m=1

or

OMSE 1 A- 9
OWLM M O-LM(ym _ dm)2 (D.6)

rn=1

therefore

OMSE 2 m OyM
OWLM - (YM - dM) WLM (D.7)

but

L
YM= WMyi (D.8)

1=1

thus

OM -YL (D.9)
OWLM

therefore

OMSE 2
OWMS =V(yM - dM)yL (D.10)

If 71 = 2C/M where C is a constant, the training rule for this weight is
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W+M = WLM - - dM)yL (D.11)

Now, let's minimize the error with respect to the weight, or center, of radial basis function L in

layer 1 providing the link to node K in layer 0, WKL.

OMSE 8
OM _E _- L ( EM (y. - dn)2] (D.12)
OWKL 49WKL M m=1

or

OMSE 1 M- a
S = V E -KL (y - din) 2  (D.13)

m-1

thus

OMSE 2 A d OY(.
0 - E- . -i Q (D.14)
OWKL Mj ' WK

but

L
Y, = E (D.15)

1=1

therefore

o = L (D.16)

WKL = WZLW1mY1I-l

or

Wyr = yL (D.17)-OWKL ""WmOWKL

but

YL =e -  k (D.18)

or
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14-jkJ --022V2

YLe (D.19)

therefore
I ' "  V- W 16 . 2 [ ( X K' - W' . ) 2

OYL = - ' 1 ki. a e (D.20)

OWKL WKL

Simplifying

8 Y__L = Ik -'; 8 ( K (D.21)
KL L "OT,[ 2C<K.L

or

y9YL (XK - WKL) (D.22)
°'EL

Combining equations D.14,-D.17, and D.22Zgives

T - = (W- WKL) (D.23)

OWKL M01 2

If 7 = 2C/M where C is a constant, the update equation for the centers of the radial basis functions,

or weights linking the input layer, layer 0, nodes to-the hidden layer, layer 1, nodes, can be written

as

M

W+L = Wi, - ? E (Y- -d-)wL.YL (XK - WKL) (D.24)
m=1 KL

Now let's minimize the error with respect to the spread of the Lh radial basis function in the

direction of the Kh node in the input layer, layer 0, UKL.

M

OMSE - [1 'E (ym _ d) 2] (D.25)

aCTKL a9O'LM =

or

OMSE =1 M a (D.-d6)
aOKL M l GFUKL
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or

OMSE _2 At(y.=- D.1m -d . (D.27)
OOKL M'.-l FCKL

but

L

Y= >W~myI (D.28)

therefore

ay.. L W(myL
- I (D.29)

1=1 aK

This expands to

490KL WLm an(D.30)

but

YL = Zk (D.31)

or

~c1kj~l 2 -[
!ILe C e K,(D.32)

therefore

OY E[K..L(Xk;wkL
2  

-!L2]
-9Y =3,,2 ie 2q2 (D.33)

190KL kL -e

-Simplifying

19YL 8 v21( (XK -WKL) 2 ]
dYL= 2

UL -(D.34)__

'9 UrKL -90KL 2aj~ 2D3

or
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OYL - YL (XK - WKL) 2  (D.35)

~KL

Combining D.27, D.30, and D.35 gives

OMSE 2 (m (XK -WKL) 2

OcKL M=1 d)WmL 0 KL

Letting q = 2dIM where C is a constant, the incremental training rule can now be defined as

G'KL = OKL - Z(m - d:X - WKL)2 (D.37)

a+ n 1:(y. -mQWLm YL (D.37

D.3 Incremental Average Update

In this section, the-update rule for keeping the centers, or weights, of the radial basis functions

at the average of the patterns within their assigned class will be derived. Let 01(t) be the previous

average of the N pattern vectors in the cluster at time t. Then

fvl~t)= Li,(D.38)
n=1

Similarly

N+1

0n(t+1)z N (D.39)
n=l

This can be written as

N

f~i(t + 1) wIV (Z Xf + X-N+1) (D.40)
n=1

Which in turn can be written as

1 NZ n~NV( + .i I)" + I- +) (D.41)

This reduces to
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01i(t + 1)= -A[NfP I (t) + XN+1] (D.42)

Further simplifying

fJt+1 1 _)7It N+I (D.43)
t~~t + 1) = NI +1 +  I+-

This reduces to

t(t + 1) = ft(I) + iN+1 - W(t)kl (D.44)
N + I

D.4 Global MSE Minimization

In this section, the technique of globally minimizing the MSE objective function throut" the

use of a matrix inversion will be established (23). Define the total error due to all input training

patterns, P, as

1 P M2
MSE E _ (y,, dpm) 2  (D.45)

p=1 m=1

where dpn is the desired value for the m~h output node due to the Ih pattern and Ypm is the actual

value for the mth output node due to the pth pattern. This error must be minimized with respect

to the weights connecting a particular node, say node B, in the hidden layer, to a particular node,

say node D, in the output layer. That is, the error can be minimized by setting

OMSE = (D.46)
OWBD

but

OMSE a 1 P M
OWBD =  E D2 (Y, _- dpm) 21 (D.47)

p=l mn1

or

OMSE POYpD
aMED = (YpD - dpD) OWD (D.4)

aW1BD P=1WB(D48

p-
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but

L

YpD - ZWIDYpI (D.49)
1=1

therefore

aYpD a L
OYD (E W ypI) (D.50)

or

aYpD =YB(D.51)= ypE L.~
OWBD

thus

OMSE P

OWBD = E(YD - dpD)YpB (D.52)
p=1

Now, substituting for YpD, provides

MSE P L

OWED = E(EWIDYpI - dpD)YpB (D.53)
p=l 1=1

or

OMSE P L P
OWE = EEWID YpIYpBE >jdpDYpE (D.54)

p=1 1=1 p=l

Setting the equation to zero to minimize the error gives

P L P

E E D YpYpBE dpD YpD (D.55)
p=l 1=1 p=l

Now, let's define a new variable

P

MID=Z=EYpYpB (D.56)
p=1
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Here, ypi is the output of the I h radial basis function node, where 1 <1 < L, due to the pth pattern

and YpB is-the output of the Bth radial basis function due to the p th pattern. This allows the

following equation to be written:

L P

EWIDMB = ZdpYpB (D.57)
1=1 =

Now, the MSE can be minimized by ensuring the OMSE/Ow. = 0 for all weights. Define a weight

matrix W as an L by M matrix as

W11 W12 ... WlM

W21 W22 W2M (D.58)

WL1 WL2 ... WLM

Minimizing the MSE is the same as making OMSE/OW = 0 for all weights. That is, the error is

minimized by setting the aMSE/Owm = 0 for each weight in the weight matrix. But, from above,

for a given weight WED, the OMSE/OWBD = 0 when

L P

ZWIDMB E dpD YpB (D.59)
1=1 p=l

This equation states that the derivative of the error with respect to a weight linking the BIh node

radial basis function in the hidden layer to the Dh node in the output layer is minimized when the

sum of all the weights in the hidden layer, multiplied by the summation of the product of the radial

basis function outputs and the Bth radial basis function output, summed over all patterns, is equal

summation of the product of the desired output of the Dt h output node and the Bth radial basis

function summed over all patterns. For example, when B = 1, D = 1, OMSE/Own = 0 implies

that

L P

ZWtiMr1 = Z dplypi (D.60)
1=1 p=l

which-expands to

wnIMII + w21M21 +.. + wL1ML1 = dilyll + d21Y21 +... + dplY1y (D.61)
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Also, when B = 1, D-= 2, then OMSE/Ow12 = 0 implies that

L P

Zw2MIl = -dpypl (D.62)
1=1 p=1

which expands to

w12M 11 + w22M 21 + ... +- WL2ML1 = d12y1i + d22y21 + ... + dp2ypl (D.63)

Finally, when B = 1, D = 2, then OMSE/w 2 1 = 0 implies that

L P

Z wIIM12 = ZdplYp2 (D.64)
---I p=I

which expands to

w 11M12 + w21M22 + ... + WL1ML2 = d11 y1 2 + d21Y22 +... + dpjYP2 (D.65)

and so forth- for each of the weights connection nodes in the-hidden layer to nodes in the output

layer. This gives a set of L*M equations with L*M unknown weights which can be written as

MTW = YTS (D.66)

Here M is an- L by L matrix containing the summation, over all patterns, of the product of each

radial basis function output, for a given input pattern and the-B'h radial basis function output for

that pattern. That is

M11  M 12  ... MIL

M M 21  M 22  ... M2L (D.67)

ML1 ML2 ... MLL

where MIB = 'p=j YplYpB

Also, W is an L by M -matrix containing the weights linking- the nodes in the hidden layer to an

nodes in the output layer. That is
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W1l W12 ... WIM

W21 W22 ... W2M (D.68)

WLI WL2 ... WLM

where WBD is the weight linking the Bth node in the hidden layer to the Dth node in the output

layer. Here, Y is a P by L matrix containing the outputs for each of the L radial basis functions

for all P patterns. That is

Yll Y12 ... YIL

Y21 Y22 ... Y2L (D.69)

YPI YP2 ... YPL

Finally S is a P by M matrix containing the desired outputs for each of the M output nodes for all

P patterns. That is

dil d12 ... dim

S d21  d22  ... d2M (D.70)

dpl dp2 ... dpM

Thus, the weights which minimize the MSE can be found by- using the following equation:

W = (MT)-yTS (D.71)

Now, the optimized weight WID can- be found as:

nl n12 ... nIL

(MT)- 1 = N = (D.72)

riLl nL2 ... 7 LL

or
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wI1 = N(yT S)BD (D.73)

Now

Ep= IYpIdp 1 PP=I ypIdp 2 ... EP IYpldpM

yTS PP d (D.74)

EpP=1 Ldpl EPP=1 YpLdp2 ... EP=1 YpLdpM

therefore:

L P

WED = (EpzdpD)N1 (D.75)
1=1 p=l

This method only works for matrices that do not become singular or near-singular, which can

happen if the exemplar data points used to center the radial basis functions contain redundant

information. If they do, the Singular Valued Decomposition of the matrix may be used. Conversely,

the as of the offending nodes may be adjusted to eliminate the redundancy.

D-12



Appendix E. Tables for Data Analysis

E.1 Introduction

This appendix contains the data obtained from the neural network testing, discussed in Chap-

ter 4, for the communications data and the radar signal data. This appendix begins with the com-

pilation of the data for the Kernel Classifier and Hyperplane Classifier networks implemented to

categorize the communications data. This is followed by a compilation of the data for the Kernel

Classifiers used to categorize the radar data.

E.2 Communications Signal Characterization

This data consisted of 202, 50-dimensional pattern vectors. These pattern vectors represented

either a direct sequence or a linear-stepped frequency-hopped digital communications signal. Both

Hyperplane and Kernel Classifier networks were developed to categorize this data.

E.2.1 Hyperplane Classifiers The topology for the sigmoidal-based Hyperplane Classifier

networks implemented for this problem is shown in figure 3.3. The network parameters, being the

weights and the offsets, were set using the backpropagation algorithms developed in Chapter 3.

E.2.1.1 MSE Algorithm Table E.1 shows-the categorization performance for ten Hy-

perplane Classifier networks whose parameters were trained using the incremental backpropagation

algorithm according to the MSE objective function. The data seed matched the run number and

51- training vectors were loaded for each class. The weight seed and sigma seed were both zero and

the record seed was one. The network had 50 nodes in layer 0, 18 nodes in layer 1, ten nodes in

layer 2 and two nodes in layer 3. Each of the nodes was assigned the sigmoidal transfer function.

E.2.1.2 CE Algorithm Table E.2 shows the categorization performance for ten net-

works whose parameters were trained using the incremental backpropagation algorithm according

to the CE objective function. The data seed matched the run number and 51 training vectors were

loaded for each class. The weight seed and sigma seed were both zero and the record seed was one.

The network had 50 nodes in layer 0, 18 nodes in layer 1, ten nodes in layer 2 and two nodes in

the layer 3. -Each node was assigned the sigmoidal transfer function.

E.2.1.3 CFM Algorithm Table E.3 shows the categorization performance for ten Hy-

perplane Classifier networks whose parameters were trained using the incremental backpropagation

algorithm according to the CFM objective function. The data seed matched the run number and
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Table E.1. MSE Network Performance
Iterations Run I Run 2 Run 3 Run 4 Run 3 Run 6 Run 7 Run a Run I Run 10 Avg Std

%erct %ctct %trot %trot V¢rct %crct %crct %crCt rcrct %clct %ctt %crct
1000 0,00 0.00 3.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.39 1.18
3000 490 0 000 0.00 00 0.00 0 0.0 0.00 1.0 2.17
3000 2.94 1.96 T.84 0.00 0.98 0.00 2.90 0.00 0.00 2.90 1.93 2.32
4000 7.84 0.00 7.84 0.00 3.88 1.96 4.90 2.90 0.00 2.00 3.33 2.95
5000 9.80 4.90 7.84 0.88 3.92 0.00 3.90 1.00 2.00 0.00 4.12 3.18
6000 8.82 14.63 9.90 23.53 3.88 13.67 6.90 4.90 23.30 0.00 11.76 7.71
7000 12.73 39.22 19.61 43.14 7.84 23.33 19.60 6.90 44.10 7.80 22.43 14.00
8000 19.81 30.98 35.30 66.67 24.31 0.98 30.40 10.80 49.00 44.10 38.24 16.23
900 37.23 63.73 82.94 72.53 33.30 36.40 47.10 28.40 62.70 33.00 30.98 13.64
10000 33.88 63.73 38.82 81.37 60.78 76.47 37.80 43.00 73.30 63.70 63.91- 10.43
11000 60.78 66.67 71.:3 84.31 64.71 71.37 69.60 53.90 84.30 72.30 70.39 8.67
12000 70.59 80.39 78.43 8M.31 75.49 80.39 80.40 71.60 84.20 10.40 79.02 3.09
13000 83.33 83.33 TT.41 73.53 81.37 90.20 87.30 73.30 41.20 82.40 81.98 4.94
14000 81.29 77.43 76.47 82.33 83.29 93.14 90.20 82.40 95.10 86.30 85.40 3.82
13000 84.31 86.31 86.27 86.27 80.39 100.00 92.21 88.20 94.10 83.30 87.74 3.61
16000 83.32 69.22 88.24 89.22 73.33 100.00 94.10 91.20 94.10 89.20 89.21 6.71
17000 84.27 86.27 87.23 44.31 83.33 100.00 94.10 92.20 93.10 93.10 90.19 3.23
18000 89.22 88.24 69.22 90.20 83.33 100.00 99.00 93.10 93.10 83.30 91.27 5.21
19000 90.20 90.20 44.31 93.14 87.23 100.00 97.10 98.10 98.00 94.10 93.04 4.73
20000 91.18 94.12 90.20 93.14 87.25 100.00 99.00 93.10 94.10 98.00 94.41 3.87
21000 81.29 97.06 78.43 100.00 5.29 100.00 97.10 97.10 97.10 100.00 93.74 7.33
22000 93.14 96.06 91.18 100.00 90.20 100.00 99.00 93.10 04.10 100.00 95.48 3.50
23000 100.00 97.06 87.33 100.00 40.39 100.00 99.00 98.00 93.10 100.00 93.48 6.36
24000 1000 100.00 . 10000 99.00 97.10 99.00 100.00 96.86 4.90
21000 100.00 99.02 81.37 100.00 82.33 100.00 100.00 97.10 90.20 100.00 93.00 7.17
26000 100.00 99.02 91.18 -100.00 42.33 100.00 100.00 98.00 97.10 100.00 98.77 3.46

27000 100.00 99.02 97.06 100.00 78.43 1000 100.00 96.10 98.00 100.00 96.86 6.29
28000 1000 97.06 97.06 100.00 82.33 100.00 100.00 98.20 98.10 100.00 96.68 3.11
29000 100.00 99.03 94.12 100.00 88.30 100.00 100.00 98.0 92.20 100.00 96.98 4.43
30000 100.00 100.00 94.12 100.00 88.30 100.00 100.00 99.00 92.20 100.00 97.16 4.31

. cict 86.00 76.00 66.00 -86.00 79.00 78.00 86.00 77.00 79.00 84.00 79.7o 3.92

Table E.2. CE Network Performance
Iteration Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 Average 51d

%crct %cret Vcrct %cct %crct %crct %crct %crct crct %crct %crct %crct
1000 0.00 6.86 0.00 2.94 0.00 0.00 3.98 8.82 0.00 0.00 2.45 3.29
2000 19.61 2549 31.37 20.39 18.63 16.67 27.45 - 11.76 40.20 9.80 22.16 8.73
3000 32.94 34.90 63.73 44.12 76.47 39.22 54.90 32.94 47,06 3588 34.22 9.83
4000 93.10 73.13 46.08 43.33 90.20 40.20 78.43 - 74.31 60.78 69.61 71.18 16.89
5000 93.10 91.18 37.84 96.08 91.18 37.84 69.22 80.39 73.49 81.37 81.57 13.42
6000 95.10 84.31 91.18 90.20 97.06 67.63 90.20 79.41 89.22 93.10 87.94 8.40
7000 99.02 88.24 91.18 92.16 96.08 79.41 92.16 100.00 84.31 100.00 92.23 6,2
6000 99.02 97.06 97.06 89.22 93.14 79.41 99.02 100.00 93.14 100.00 94.71 6.11
9000 98.04 96.06 100,00 97.06 100.00 94.12 100.00 100.00 96.08 100.00 98.14 2.08
10000 99.02 99.02 100.00 96.08 100.00 99.02 100.00 100.00 83.33 100.00 97.65 4.91
11000 100.00 100.00 100.00 98.04 100.00 100.00 100.00 100.00 96.08 100.00 99.41 1.26
12000 100.00 100.00 100.0 1 1010 0 1 100.00 78.41 100.00 97.84 6.48
13000 100.00 100.00 100.00 100.00 100.00 100.0 100.00 100.00 92.16 100.00 99.22 2.33
14000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 91.18 100.00 99.12 2.63
13000 100.00 100.00 100.00 100.00 100.00 - 100.00 100.00 100.00 98,04 100.00 99.80 0.39
16000 100.00 100.00 100.00 100.00 100.00 100.00 000.00 100.00 93.10 100.00 99.31 1.47
17000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 92.18 100.00 91.22 2.31
18000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 93.10 100.00 99.31 1.47
19000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 98.04 100.00 99.80 0.39
20000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 97.06 100.00 99,71 0.68
21000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.02 100.00 99.90 0.29
22000 100.00 100.00 100.00 100.00 100.00 100 1 0 100.00 94.12 100.00 99.41 1.76
23000 100.00 100.00 100.00 100.00 100.0 0 1 0 0.00 100.00 94.12 100.00 99.41 1.76
24000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 97.08 100.00 99.71 0.68
23000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100 .00 99.02 100.00 99.90 0.29
26000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.02 100.00 99.90 0.29
27000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.02 100.00 99.90 0.29
23000 100.00 100.00 -100.00 100.00 100.00 100:00 100:00 10000 10000 100.00 10.0 0 00
23000 100,00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0,00
30000 100.00 100.00 100.00 100.00 100.00 10000 10000 100.00 O10000 00. 1000 0.00

% Crt 77 00 71.00 83.00 J8000 83.00 88 0 83.00 78.00 83,00 82.00 81,20 4 64
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Table E.3. CFM Network Performance
terations R I RunR anu4 IuoS Run Run R3n R Run Run 10 vs St

%tot %tCo %crc t %e, %erct %ct %lct %rct %tc %ctct %rclt %cret
1000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2000 6.86 37.25 0.00 3.24 33.33 0.00 12.75 15.89 0.00 0.00 14.41 15.30
3000 14.71 45.10 19.81 44.12 43.14 0.00 40.20 18.86 1.96 16.67 24.22 16.59
4000 11.76 49.02 17.85 49.02 47.08 21.17 37.25 34.21 17.85 8.88 29.22 15.24

5000 31.37 50.99 3 .33 52.94 46.04 41.18 36.27 36.27 31.37 28.43 39.02 6.36
8000 54.90 50.9 43.14 53.92 49.02 46.04 44.12 37.25 37.25 37.25 41.39 6.48
7000 61.76 48.04 43.14 50.00 51.96 49.02 39.22 39.22 49.02 33.24 46.96 6.88
8000 88.63 46.08 49.02 36.27 02.94 50.98 44.12 48.04 82.75 46.08 50.49 8.81
9000 74.51 29.41 61.76 46.08 44.12 30.00 45.10 54.91 86.67 46.08 51.66 12.33
10000 78.43 36.27 71.57 41.18 04.90 53.92 50.98 55.88 74.51 50.00 56.76 13.26
11000 79.41 32.94 61.37 52.94 58.82 35.88 60.78 52.94 77.41 6.86 62.94 11.09
12000 81.31 59.80 77.45 52.94 58.62 54.90 85.69 53.92 78.43 18.82 64.51 10.86
13000 83.33 82.75 78.43 54.90 83.72 55.88 88.83 82.75 81.37 57.84 88.98 10.04
14000 83.33 83.73 83.33 50.00 85.69 55.88 71.59 70,59 82.31 54.90 88.14 11.87
15000 83.29 64.71 87.25 50.98 84.71 58.88 78.47 78.47 87.25 80.78 71.08 12.58
18000 83.33 71.57 98.24 58.83 87.85 .C.8 78.47 79.41 85.29 64.71 73.24 10.51
17000 84.31 70.59 89.22 61.78 69.81 57.84 80.39 83.33 87.25 84.71 74.90 10.78
18000 85.29 7647 80.22 5.89 87.85 57.84 .0.39 83.33 87.25 65.89 75.88 10.38
19000 85.29 90.20 90.20 72.55 71.57 56.86 6.27 82.35 88.24 63.73 78.73 11.22
20000 86.27 79.41 91.18 74.51 71.57 57.84 87.25 83.33 88.24 76.47 79.61 9.48
21000 87.25 81.37 91.18 75.49 72.55 58.82 87.25 88.27 89.22 77.45 80.0 9.59
22000 87.25 83.33 91.18 79.41 72.55 58.82 88.24 89.22 89.22 80.39 81.98 9.40
23000 87.25 84.31 90.02 81.37 74.51 38.82 88.24 90.20 89.22 43.29 82.92 9.23
24000 87.25 6.27 91.16 87.25 73.53 49.02 88.24 91.18 89.22 81.37 82.45 12.21
25000 87.25 85.2 91.18 90.20 73.53 53.92 88.24 91.18 89.22 85.29 83.53 11.01
26000 87.25 83.29 91.1 89.22 74.,1 52.94 88.24 91.18 89.22 90.20 83.92 11.32
27000 87.25 86.27 91.18 89.22 74.51 54.90 88.24 91.1 89.22 90.20 84.22 10.80
28000 87.25 83.33 97.08 91.18 74.51 51.98 88.24 91.18 89.22 91.17 84.51 12.23
29000 87.25 83.33 91.18 89.22 74.51 52.94 88.24 91.18 89.22 90.20 83.73 11.31
30000 87.23 6.27 91.,1 92.16 74.51 55.6 88.24 91.18 89.22 93.14 84,90 10.89
31000 87.25 6827 91.18 92.16 74.21 84.71 824 91.18 89.22 93.14 85.79 8.63
32000 87.25 87.21 91.18 93.14 74.51 88.83 0824 91.18 89.22 93.14 88.37 7.71
33000 872 7.2 9118 92.18 74.51 72.55 8.24 91.18 89.22 92.18 88.57 6.77
34000 87.25 87.21 91.18 92.18 74.51 73.53 88.24 91.18 89.22 93.14 88.77 8.85
35000 87.21 89.22 91.18 94.12 74.51 78.43 8.24 91.18 89.22 92.18 88.57 8.77
38000 87.25 90.20 91.18 92.16 74.51 81.37 88.24 91.18 89.22 93.14 87.85 5.43
37000 87.21 89.22 91.18 93.14 74.51 82.35 88.24 91.18 89.22 93.14 87.94 5.39
38000 87.21 90.20 91.18 93.14 74.51 83.33 88.24 91.18 89.22 93.14 88.14 5.33
39000 87.21 90.20 69.22 94.12 74.51 83.33 88.24 91.18 89.22 93.14 88.04 5.35
40000 87.25 91.18 90.20 94.12 74.51 79.41 88.24 91.18 89.22 93.14 87.85 5.89
41000 87.21 90.20 91.08 94.12 74.51 85.29 88.24 91.18 89.22 93.14 88.43 5.28
42000 67.21 91.18 91.18 94.12 74.51 85.29 88.24 90.18 89.22 93.14 88.53 5.32
43000 67.21 90.20 91.18 94.12 74.51 85.29 88.24 91.18 89.22 93.14 8.43 5.28
44000 87.25 91.18 91.18 94.12 74.51 86.27 88.24 91.18 89.22 93.14 88.83 5.27
45000 87.25 92.18 91.18 94.12 74.31 8627 88.24 91.18 89.22 93.14 88.73 5.32
46000 87.23 92.16 91.18 94.12 74.51 86.27 88.24 91.18 89.22 93.14 88.73 5.32
47000 87.25 9218 92.18 94.12 74.51 86.27 88.24 91.18 89.22 93.14 88.83 5.37
46000 87.25 92.16 92.18 94.12 74.51 6.27 88.24 91.18 89.22 93.14 88.83 5.37
49000 87.25 92.16 92.16 94.12 74.51 88.27 88.24 91.18 89.22 93.14 88.83 5.37
50000 87,25 92.16 92,18 94.12 74.51 8827 8824 911 89.22 93.14 88.83 -5.37
% tct 57,00 74 00 7700 74 00 42.00 7200 71.00 8200 000 8300 7320 7,93
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51 training vectors were loaded for each class. The weight seed and sigma seed were both zero and

the record seed was one. The network had 50 nodes in layer 0, 18 nodes in layer 1, ten nodes in

layer 2 and-two-nodes in layer 3. Each node-was assigned the sigmoidal transfer -function.

E.2.2 Iernel Classifiers The topology for the radial basis function Kernel Classifier net-

works implemented for this problem is shown in figure 3.7 The network parameters, being the

weights and the spreads, were set using the algorithms developed in Chapter 3.

E.2.2.1 Nodes at Data Points Tables E.4 and E.5 show the training and test catego-

rization performance for a Kernel Classifier network-with a variable number of hidden layer, layer

1, nodes. The weights for these nodes were established using the Nodes at Data Points algorithm.

Table E.4. Nodes at Data Points Trainin Performance vs Nodes
Nodes Run 0 Run I Run 2 Run 3 Run 4 Run a Run 6 Run 7 R run 9 Av S

%crcot %czct %crct %crct %erot %CjCt _ %crct %crct %clct %crot %crct %cTct
102 100.00 200.00 100.00 100.00 100. 0000 0, 00 .00 00.00 00.00 100.00 0.00

90 10.00 9.03 99.02 69.02 99.02 100.00 100.00 100.00 9::04 98.04 99.22 0.73
t0 99.02 99.02 97.08 97.08 99.02 99.02 99.02 100.00 98.04 98.04 98.83 0.90
70 94.12 97.06 96.08 94.08 95.10 98.04- 97.06 100.00 97.06 97.06 98.77 1.32
60 95.10 97.06 97.06 98.10 93.14 94.12 51.IT 99.02 96.08 96.04 98.39 2.11
80 92.14 97.06 95.10 95.10 93.14 92.16 49.22 97.06 96.08 90.20 93.83 2.89
40 87.25 97.06 91.18 8.924 88.24 89.22 $3.33 82.16 91.18 90.20 *$.#1 3.98
30 -4.31 94.12 91.18 84.31 89.22 83.29 75.49 92.18 88.24 83.32 86.77 3.14
20 79.41 89.22 88.29 73.83 84.21 74.81 71.46 824 83.33 79.41 80.87 3.90
10 62.19 73.53 63.73 66.63 75.49 60.78 62.78 78.43 72.55 88.62 68.03- 6.36
0 80.00 50.00 80.00 50.00 50.00 80.00 80. 0.00 50.00 80.00 50.00 - 0.00

Table E.5. Nodes at Data Points Test Performance vs Nodes
I Pun I "u , Ic 3 Run 4 -Run Run 6 Wun 7 un a Run 9 Avg it

%cict %crct %cret %cct %9to. e %cIot %trot %cxct %trct %crct %crct %€ict
102 83.00 81.00 7T.00 87.00 85.00 92.00 89.00 88.00 86.00 84.00 84.90 3.94

84.00 82.00 77.00 78.00 84,0 92.00 00.00 85.00 84.00 82.00 83.40 3.90
60 83.00 76.00 74.00 80.00 82.00 92.00 84.00 8.00 84.00 6.00 82.60 4.84
70 62.00 75.00 77.00 2.00 79.00 8600 83.0000 .00 8.00 79.00 81.20 2.40
60 84.00 - 73.00 73.00 70.00 .0 7.00 75.00 83.00 90.00 81.00 79.40 4.22

80 87 00 71.00 7 800 790 0 79.00 88.00 7$.00 0.00 79.00 7 .00 7 .0 4 .9

40 78.00 75.00 7 5.00 81.00 78.00 87.00 76.00 7600 8.00 76.00 78.00 4.12

30 78.00 71.00 69.00 73.00 71.00 90.00 63.00 79.00 85.00 74.00 78.30 7.32
20 75.00 71.00 68.0 0 6. 65.00 74.00 60.00 74.00 80.00 72.00 70.80 5.52
10 60.00 82.00 59.00 58.00 60.00 64.00 51.00 59.00 89.00 64.00 59.60 3.50
0 80 00 50 00 50 00 50.00 50.00 50.00 50.00 50.00 50.00 80.00 50.00 0.00

For the software parameters, the output threshold was set to one, the sigma threshold was

set to four. The training rule for the sigma was the Scale Sigma According to Class Interference

with interference threshold of .4. The data seed was zero and 51 training vectors were loaded for

each class. The-number of nodes in layer 0 was 50, while the number of nodes in layer 1 is shown

in the table and the number of nodes in layer 2 was-two. The transfer function for the nodes in

layer 1 was gaussian while the transfer function for the nodes in layer 2 was linear. The weights

linking layer 1 nodes to layer 2 were set via global minimization of the MSE.
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E.2.2.2 Kohonen Training Tables E.6 and E.7 show the training and test categoriza-

tion performance of Kernel Classifier networks with the layer 1 weights trained using the Kohonen

Training algorithm with the RBF spreads set using the P-Nearest Neighbor algorithm and P held

constant at six.

Table E.. Kohonen Training Performance vs Nodes with Six P-Neighbors
Nodes P Ran 0 Ru I .un 2 Ran 3 Run 4 Run a Run I Run 7 Run Rua9 Avg Sid

%crct %crct %era %C %cct %crct %ezc: Werct %crct
100 6 100.00 82.35 100.00 100.00 96.09 79.41 96.08 91.18 100.00 93.14 93.82 7.14

6 99.02 i00.o0 100.00 100.00 100.00 100.00 100.00 100.00 100.00 98.04 99.71 0.83
64 • 9.0 90 9.:970 902 9::04 99.02 :99.2 100,00 96.10 97.:4 1:.'t

49 8 92.10 94.12 94.20 95.10 96.08 96.06 93.14 94.12 96.08 9'.10 94.91 0.95
36 6 91.18 94.12 88.24 92.20 87.25 94.12 93.14 91.18 89.22 92.16 91.28 2.28

25 6 84.24 84.31 90,20 98.24 89.22 88.24 86.29 87.25 8.24 88.24 87.95 1.53
16 8 77.43 _8.24 85.30 82.35 84.31 83.33 90.39 83.33 86.27 86.27 83,72 2.98

Table E.7. Kohonen Test Performance vs Nodes with Six P-Neighbors
Nodes P Run 0 Run I Run 2 un 3 an 4 un 6 on 6 Mn I R a un 9 Avg td

%crcl %ctct %crct %crct %crct %erct %Crct %crot %trc %trct %cect %¢tet
100 6 93.00 39.00 59.00 73.00 62.00 34.00 84.00 64.00 72.00 51.00 62.00 7.13
81 8 74.00 8.0 7.00 79.00 82.00 85.00 86.00 79.00 80.00 74.00 76.00 8.18
84 8 75.00 77.00 79.00 73.00 80.00 77.00 89.00 86.00 80.00 81.00 77.90 4.28

49 8 80.00 71.00 78.00 79.00 73.00 88.00 77.00 78.00 82.00 78.00 77.80 4.09
386A 76.0 1. .00 00 83.00 80.00 80.00 80.00 7.80 3.10

25 6 80.00 69.00 .2.00 75.00 78.00 77.00 81.00 72.00 80.00 76.00 77.00 3.92
16 8 79.00 71.00 7600 71,00 76.00 77.00 79.00 69.0 7.00 71.00 74.70 3.61

For the software parameters, the data seed matched the run number and 51 training vectors

were loaded from each class. The number of nodes in layer 0 was 50, while the number of nodes in

layer 1 is shown in the table and the number of nodes in layer 2 was two. The transfer function

for the nodes in layer 1 was gaussian while the transfer function for the nodes in layer 2 was linear.

The weights linking layer 1 nodes to the layer 2 nodes were set using the global MSE minimization

algorithm.

Tables E.8 and E.9 show the categorization performance of Kernel Classifier networks with

the layer 1 weights trained using the Kohonen Training algorithm. Here the spreads of the RBFs

were set using the P-Nearest Neighbors algorithm with P allowed to vary as the square root of the

number of Kohonen nodes.

Table E.8. Kohonen Training Performance vs Nodes with Variable P-Nei hbors
Nodes P Run 0 Run I Run 2 Run 3 Run 4 Run 5 Ru, 6 u 7 an Run 9 Avg Std

%r %cret %crer %C t %crO CL %c rct %Crct %crct %crct %crct %cret
100 10 100.00 99.02 61.76 97.06 94.12 100.00 100.00 85.33 94.12 90.02 91.94 13.27
81 9 99.02 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.90 0.29
0 Z 2"0.01 2.02 2O.01 02.01 22.02 07.00 02.. 22.02 100.00 00.01 07.21 1..2
49 7 95. 510 93.14 95.10 96.0 97.06 91.18 94.12 96.0 95.10 94.81 1.8
36 91.18 24.12 88.24 92.18 97.25 94.12 13.14 91.18 89.22 92.16 91.28 2.26
25 5 89.24 83.33 69.22 86.27 99.22 88.24 69.29 88.24 89.24 8.24 87.51 1.7O
16 4 77$4 8725 8431 8137 84 31 81 37 803 8333 8824 8723 8353 328 -
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Table E.9. Kohonen Test Performance vs Nodes with Variable P-Neighbors
Nodes P Run 0 Run I Run 2 Runa 3 Rua 4 Rus 6 Rusk Ruan 7 E.n Run 9 Avg Std

I Zcect Yc.ct %c.ct Aceor ct %crct %ctct %eeet Vrcect %clct %crot %cct ct
00 110 75.00 66.00 60.00 M.00 6.00 21.00 38.00 50.00 40.00 53.00 38.70 .30

81 9 I 0.00 63.00 73.00 78.00 77.00 72.00 84.00 77.00 82.00 77.00 74.50 5.16
&64 79.00 76.00 77.00 77.00 79.00 79.00 83.00 90.00 81.00 81.00 80.20 3.84
76.00 74.00 8.00 0.00 74.00 . .00 8.00 82.00 70.00 78.70 3.10

3 6 76 7 000 .0 7.00 0.00 74.00 82.00 73.00 70.00 82.00 77.00 78.70 3.90
25 5 80.00 66. 80.00 700 78.00 77.00 81.00 72.00 81.00 76.00 78.80 4.02
16 4 78.00 71.00 77.00 72.00 78.00 78.00 79.00 69.00 76.00 73.00 74.90 3.24

For the software parameters, the data seed matched the run number and 51 training vectors

were loaded from each class. The number of nodes in layer 0 was 50, while the number of nodes in

layer 1 is shown in the table and the number of nodes in layer 2 was two. The transfer function

for the nodes in layer 1 was gaussian while the transfer function for the nodes in layer 2 was linear.

The weights linking layer 1 nodes to the layer 2 nodes were set using the global MSE minimization

algorithm.

E.2.2.3 K-Means Clustering Tables E.10 and E.11 show the categorization perfor-

mance of a Kernel Classifier with the hidden layer, layer 1, weights trained via the K-Means

Clustering Algorithm as the number of nodes increased.

Table E.10. K-Means Training Performance vs Nodes with Six P-Neighbors
Nodes Run 0 RunI - Run 3 Run4 7 Run a Run 9 Avg Std

%trot %crot %crot %crct %crct %crct %crct %crct %c, %tret %cret %ctct
90 100.00 99.02 100.C0 0 00 100.00 100.00 99.02 100.00 99.41 0.78

80 97.06 99.02 95.10 98.04 07.06 98.04 100.00 100.00 97.06 99.02 98.33 1.52
70 94.12 99.02 92.16 96.0& 95.10 98.04 100.00 100.00 96.08 98.04 97.16 2.50
60 92.16 98.04 92.16 95.10 95.10 97.06 96.08 97.06 97.06 94.12 95.59 1.71
50 94.12 98.04 94.18 95.10 94.12 94.12 93.14 95.10 94.12 1.18 94.13 1.75

40 91.18 960 9824 9.4 94.2 94,12 341 9314 93.1 9.0 3.04 2.12

30 87,25 02.16 87.25 89.22 92.16 90.20 89.22 91.20 88.24 89.22 90.01 1.57
20 86.27 04.31 84.31 86.27 88.24 84.31 76.47 88.24 84.31 83.33 84.70 3.23
10 70.59 77.45 77.45 84,31 80.39 79.41 77,45 84.31 72.55 82.35 80.19 3.96

Table E.11. K-Means Test Performance vs Nodes with Six P-Neig hbors
Nodes Run 0 Run I Run 2 Run 3 Run 4 Iun 5 Run RunT Run a Run 9 Avg Sd

V;ctcO J Vcte %cct %crci %crct %crct %crct %trot %crct %trot %trot %crct
100 82.00 79.00 74.00 91.00 84.00 80.00 900 0 97.00 78.00 87.00 83.90 5.34
0 860.00 79.00 73.00 89.00 82.00 85.00 90.00 80.00 78.00 84.00 82.70 4.86
00 80.O0 76.00 72.00 80.00 61.00 84.00 87.00 83.00 81.00 86.00 82.20 4.64
TO 78.00 830.00 7,00 83.00 78.00 6.00 85.00 85.00 84.00 84.00 8240 273
0 7,.00 79.00 7.00 8 0 60.00 80.00 80.00 84.00 78.00 70.90 3.36
40 79.00 79.00 73.00 82.00 78.00 80.00 80.00 80.00 87.00 74.00 79.00 3.71
40 79.00 74.00 79.00 83.00 78.00 82.00 8200 85.00 86.00 74.00 78.60 4.73
30 83.00 71.00 72.00 79.00 79.00 81.00 54.00 77.00 78.00 72.00 74.20 7.52
20 79.00 70.00 71.00 77.00 72.00 80.00 78.00 73.00 76.00 75.00 75.30 3.93
10 77.00 70-00 78.00 72.00 73.00 74.00 79.00 73.00 90.00 73.00 75.30 3.29

For the software parameters, the RBF sigmas were set via the P-Nearest Neighbor algorithm

with P held at six. The data seed matched the run number and the data was loaded by classes.

The number of nodes in layer 0 was 50, while the number of nodes in layer 1 is shown in the table
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Table E.9. Kohonen Test Performance vs Nodes with Variable P-Nei hbors
Nods P Run 0 RuX-I Rusk 2 Rum 3 Run 4 Rum Rua 6 R~u 7 FAn A Run Avg 3td

%erct %tct % rc% % t ¢ct ¢rct %ct %Crt ctcc %crct %rt 0
100 10 ts,00 66.00 00.00 54.00 18.00 61.00 58.00 6.00 40.00 3,00 5:,.0 S1
£1 9 £0.00 ,5.00 73.00 700 77.00 72.00 £4.00 77.00 £2.00 77.00 74.50 S.11
64 a 79.00 72.00 77.00 77.00 79.00 79.00 -3.00 £0.00 £1.00 £1.00 £0.20 3.84
4 0.00 7200 70.00 £0.00 74.00 £7.00 79.00 77.00 82.00 77.00 :0 3.9
3: 6 76.00 74.00 81.00 75.00 73.00 £2.00 £3.00 £0.00 £0.00 60.00 78.40 3.10
25 5 £0.00 £0.00 £00 7.00 76.00 700 £1.00 20 1.00 76.00 7680 4.02
11 4 78.00 71.00 77.00 72.00 76.00 7.00 70.00 .9.00 76.00 73.00 74.90 3.24

For the software parameters, the data seed matched the run number and 51 training vectors

were loaded from each class. The number of nodes in layer 0 was 50, while the number of nodes in

layer 1 is shown in the table and the number of nodes in layer 2 was two. The transfer function

for the nodes in layer I was gaussian while the transfer function for the nodes in-layer 2 was linear.

The weights linking layer 1 nodes to the layer 2 nodes were set using the global MSE minimization

algorithm.

E.2.2.3 K-Means Clustering Tables E.10- and E.11 show the categorization perfor-

mance of a Kernel Classifier with the hidden layer, layer 1, weights trained via the K-Means

Clustering Algorithm as-the number of nodes increased.

Table B.10. K-Means Trainin Performance vs Nodes with Six P-Nei hbors
Nodes Ru" 0 Run I Run Ru nn 3 R um 4 Run 3 Rua 8 Rum I Run a Runm 9- Avg

_ Vcrct %cret %crot %rc'ct %crot %€rct %crct %crct %crct %crot %crct %crct
100 100.00 100.00 100.00 100,00 99.02 100.00 100.00 100.00 100.00 100.00 99.90 0.29
90 100.00 99.02 100.00 100.00 98.04 98.04 100.00 100.00 99.02 100.00 99.41 0.78
80 97.06 99.02 95.10 98.04 100.00 100.00 97.06 99.02 98.33 1.52
70 94.12 99.02 92.16 96.0£ 95.10 98.04 100.00 100.00 96.08 98.04 97.16 2.30
60 92.16 98.04 92.16 91.10 95.10 97.06 96.0£ 97.06 97.06 94.12 95.39 1.71
50 94.12 98.04 94.1£ 95.10 94.12 94.12 93.14 95.10 94.12 91.11 94.12 1:73
40 91.18 96.08 88.24 93.14 94.12 94.12 94.12 92.14 93.14 90.20 93.04 2.12
30 87.25 92.16 £7.25 89.22 92.16 90.20 59.22 91.20 88.24 89.22- -90.01 1.57
20 86.27 84.31 84.31 £6.27 8.24 84.31 76.47 88.24 84.31 83.33 84.70 3.23
10 70.59 77,4 77.45 84.31 80.39 79,41 77.45 84.31 72.55 82.35 80.19 3.96

Table E.11. K-Means Test Performance-vs Nodes With Six P-Neighbors _

Nodes Run 0 RunI Run- Run 3 Rum 4 un n Run Ru 0 Avg t
%crct %czct %crot %cgct %crot I %crc t -%crct %cr t o %crct %ect - %crct %crct

100 82.00 79.00 74.00 91,00 84,00 1 86.00 91.00 7.00 78.00 87.00 82.90 5.24
90 86.00 79.0 70 85.00 78.00. 00 00 82.70 4.86
80 80.40 76.00 72.00 80.00 81.00 84.00 87.00 83.00 81.00 86.00 82.20 4.64
70 78.00 80.00 79.00 83.00 78.00 86.00 85.00 85.00 84.00 84.00 82.40 2.73
00 790 7 79.00 75.00 83.00 78..00 0.0 00 8.00 8.00 7.00 7.90 3.31
so 79.00 79.0 13.00 2.0 78 0 80.0 0 0 goo0.0 8.0 T00 9.00 3.71
40 79.00 74.00 70.00 80.00 79.00 82.00 82.00 80.00 86.00 74.00 78.60 4.45
30 83.00 71.00 72.00 79.00 79.00 81,00 54.00 77.00 78.00 72.00 74.20 7.52
20 79.00 70.00 71.00 77.00 72.00 80.00 78.00 73.00 76.00 75.00 -75.0 3.93
10 77.00 7000 78.00 72.00 7 T00 74.00 79.00 75.00 80 00 7300 75.30 3.29

For the software parameters, the RBF sigmas -were set via the P-Nearest Neighbor algorithm

with P held at six. The data-seed matched the tun number and the data was loaded by classes.

The-number of nodes in layer 0 was 50, while the number of nodes in layer 1 is-shown in the table
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E.2.2 .4 Center at Class-Clusier Averages Tables E.14 and E.15 show the categoriza-

tion performance for a Kernel Classifier network whose hidden layer weights vere trained using the

Center at Class-Cluster Averages algorithm. Table E.16 shows the number of layer 1 nodes created

to cover the input data space for each run.

Table E.14. Center at Class verages Traii Performance vs Av Threshold
Avg Rum 0 Run I Ron 2 Run 3 Ri4 us 3 RU a I RQT Rn 8 un9 Av s T

Theshld %oes %€crt %cec' %osct %erct %c'ct %et %cet %etc, %c'et %cect %eros
0.2 100.00 100.00 100.00 100.00 100.00 100.010 000 100000 1oo.00 100.00 0,00
0,0 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.00
0.7 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 10.00 10000 100.00 0.00
1.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.00
1.21 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.00
1.10 99.02 99.02 98.04 98.04 98.04 100.00 99.02 100.00 100.00 100.00 99.12 0.81
1.75 98.04 96.08 96.08 98.08 97.06 96.08 97.08 98,04 99.02 100.00 97.31 1.32
2.00 96.0' 95.10 94.12 94.12 93.14 91.10 93.14 94.08 97.06 100.00 95.39 1.98
2.25 91.18 91.18 89.22 89.22 94.18 92.18 93.14 95.10 96.08 90.20 92.17 2.28
2.50 90.02 92.16 84.30 84.30 87.25 93.14 94.12 91.20 90.20 89.22 89.49 3.11
2.75 92.16 91.18 T647 76.47 87.31 92.16 84.31 82.35 84.31 88.24 88.48 6.09
3.00 86.27 87.25 74.51 74.51 84.31 87.25 83.33 77.45 85.29 83.33 82.41 4.77
3.25 87.2 5 7.25 62.75 62.75 80.39 75.10 69.81 66.67 77.45 81.3T 76.47 8.91
3.50 86.2T 70.1 60.78 60.78 7549 I . ',3 69.81 6.88 50.98 62.75 61.78 9.58
3.75 86.27 68.63 18.82 58.82 61.76 54.6 39.80 16.86 1.96 62.75 63.23 9.22
4.00 11.88 61.78 10,00 10.00 5.88 6.866 8000 56.86 1.961 8.82 14.80 3.91

Table E.15. Center at-Class vs AvgThreshold
Avg Run 0 R Run 2 n 3 Run 4 T Ru n6 Run T Runa R un 9 Avg Std

Thtishld %cct %cect %cct %ec% %ecrt %c tt %c %c t %c'c' %ctct %cct %ctt
0.25 83.00 81.00 77.00 7.00 2 00 85.00 85.00 81.00 94.00 3.16
0,10 83.00 82.00 77.00 87.00 .2.00 7.00 89.00 85.00 865.00 84.00 84.10 3.21
0.75 81.00 81.00 77.00 81,00 85,00 86.00 89.00 1.00 82,00 84.00 63.10 3.17
1.00 82.00 81.00 77.00 84.00 83.00 86.00 88.00 64.00 81.00 84.00 83.40 2.84
1.21 82,00 80.00 77.00 81.00 84.00 6. 000 86 .0008.00 800 83.40 2.84
1.50 83.00 100 78.0 8 00 0 84.00 83,00 84.00 83.90 2.98
1.75 83.00 79.00 80.00 80.00 82.00 90.00 84.00 81.00 82.00 82.00 82.70 3.00
2.00 84.00 78.00 83.00 77.00 7.00 81.00 81.500 83.00 78.00 80.00 80.40 3.17
2.21 83.00 74.00 79.00 79.00 80.00 86.00 88.00 82.00 79.00 80.00 80.70 3.29
2.10 82.00 76.00 80.00 74.00 78.00 86.00 85.00 78.00 76.00 78.00 79.60 4.27
2.75 80.00 71.00 78.00 76.00 77.00 82.00 85.00 71.00 68.00 78.00 78.60 5.02
3.00 78.00 72.00 78.00 88.00 83.00 78.00 82.00 69.00 81.00 72.00 78.40 5.67
3.25 77.00 72.00 7.00 57.00 73.00 74.00 71.00 64.00 6.00 70.00 72.10 8.35
3.10 71.00 73.00 82.00 89.00 19.00 71.00 71.00 57.00 57.00 54.00 66.80 8.91
3.75 75.00 69.00 60.00 89.00 54.00 60.00 19.00 5.00 j 51.00 14.00 61.80 8.08
4.00 57.00 88.00 19.00 50.00 52.00 19.00 10.00 11.00 51.00 16.00 54.70 3.47

Table E.16. Nodes Generated for Center at Class Averages vs Avg Threshold
Average Run 0 Run.1 Run 2 Run3 RuR 4 iti 3 Run 6 Run 7 Run Run9 Avg Std

Threshold Nodes Nodea Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes
0.25 102.00 100.00 101.00 102.00 99.00 100.00 9.00 100.00 100.00 100.00 100.0 1.00
0.10 95.00 89.00 93.00 96.00 92.00 95.00 90.00 91.00 91.00 89.00 92.10 2.41
0.75 86.00 77.00 88.00 86.00 84.00 81.00 85.00 81.00 81.00 81.00 83.00 2,83
1.00 77.00 72.00 78.00 75.00 76. 0 5.0 90 700 74.60 2.87
1.22 65.00 64.00 8.00 66,00 62.00 68.00 66.00 61.00 17.00 66.00 64.30 3.26
1.50 14.00 45.00 54.00 50.00 10.00 53.00 54.00 51.00 52.00 55.00 51.80 2.82
1.75 42.00 3 .00 41.00 40.00 41.00 41.00 39.00 7.00 40.00 43.00 40.00 2.01
2.00 32.00 28.00 32.000 0 28 28.00 52.00 32.00 30.00 29.00 31.00 30.60 2.24

2.25 24.00 21.00 24.00 20.00 24.00 23.00 27.00 24.00 22.00 23.00 23.70 3.07
2.60 19.00 19.00 15.00 11.00 18.00 16.00 20.00 15.00 14.00 16.00 17.50 3.86
2.75 14.00 15.00 14.00 11.00 14.00 13.00 15.00 12.00 11 00 30 13.70 2.45
3.00 12.00 12.00 12.00 8.00 13.00 13.00 12.00 10.00 10,00 11.00 11.60 1.85
3.21 11.00 12.00 10.00 5.00 12.00 9.00 8.00 8.00 8.00 8.00 9.50 2.20
3.50 9.00 9.00 9.00 5.00 7.00 7.00 8.00 4.00 4.00 6.00 6.80 1.89
3.75 8.00 8.00 7.00 3.00 4..00 5.00 6.00 3.00 3.00 6.00 5.50 2.06
400 300 500 0 00 0 10 100 100 Z 00 :'70 I :

For the software parameters, the average threshold was allowed to vary, the data seed matched

the run number, the sigma threshold was set at four and the training rule for the RBF sigma was
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the Scale Sigma According to Class Interference with interference threshold of .4. The data seed

matched the run number while 51 training vectors were loaded for each class. The number of nodes

in layer 0 was 50, while the number of nodes in layer 1 is shown in the table and the number of

nodes in layer 2 was two. The transfer function for the nodes in layer 1 was gaussian while the

transfer function for the nodes in layer 2 was linear. The weights linking layer 1 nodes to layer 2

nodes were set using the global MSE minimization algorithm.

E.2.2.5 PNN/RBF Comparison Tables E.17 and E.18 show the categorization per-

formance of a PNN as the sigma varied., The weights in the hidden layer were trained using the

Nodes at Data Points algorithm.

Table E.17. PNN Trainin Performance vs Sima
Simne Run I Run 2 Run 3 Run 4 Run a Run • Run 7 Run a Run 9 Run 10 Av Std

%Crct %crc t %coct %ct %Crct %Crcj %Crct %cctr ct %erct %crct %rct
02 100.00.0 10000 100.00 100.00 100.00 100.00 100.00 10000 0.00
0.10 100000 100.00 200.00 100..00 1000 0 000 0 1000 00 0.00 0.00
0.75 94.12 97.06 97.06 96.08 96.09 93.10 97.06 94.12 91.10 96.09 95.79 1.06
1.00 66.24 80..29 90.20 91.16 69.22 91.16 87.25 67.25 86.27 93.33 67.94 2.43
2.205 60.9 78.47 75.49 77.45 76.43 79.42 77.45 72.33 77.45 72.15 78.77 2.46
1.50 67.85 62.73 683 62.75 89.81 80.76 60.768 0.76 70,59 81.78 84.61 3.81
1.73 56.66 5.66 57.89 56.62 60.76 54.91 51.98 53.92 59.80 57.64 56.87 2.19
2.00 50.98 50.00 53.92 51.96 56.88 52.94 50.98 50.00 54.10 53.92 52.57 2.06
2.25 10.96 50.00 50.9 10.9 54.91 50.00 50.00 50.00 51.98 50.00 50.98 1.48
2.50 50.00 50.00 50.00 50.96 2.94 50.00 0.00 50.00 50.00 12000 50.09 0.90
2.75 50.00 50.00 50.00 10.00 52.94 50.00 50.00 0 50.00 500 0 50.00 50.09 0.66
3.00 50.00 50.00 50.00 50.00 50.96 50.00 10.00 50.00 50.00 50.00 50.10 0.29

Table E.18. PNN Test Performance vs Si ma
Sim nn Run I R 2 Rn Run 4 'nT Ru *6 Rn Run I u *1"10 Avg t

%crct %czct %crct %tot %tro %trot %c¢ %€C'ct %trot %trot %trot %cret
0.20 74.00 76.00 62.00 77.00 78.00 84.00 62.00 64.00 66.00 6.00 61.10 3.91
0.50 73.00 73.00 S1.00 75.00 a0.00 80.00 67.00 66.00 86.00 69.00 81.20 5.63
0.73 70.00 68.00 50.00 72.00 74.00 80.00 63.00 86.00 84.00 89.00 78.20 6.63
1.00 66.00 69.00 72.00 84.00 67.00 76.00 73.00 76.00 76.00 76.00 71.70 4.67
1.25 59.00 63.00 62.00 59.00 64.00 68.00 67.00 69.00 65.00 66.00 64.20 3.31
1.30 58.00 56.00 56.00 54.00 56.00 39.00 56.00 16.00 59.00 57.00 36.90 1.51
1.73 51.00 52.00 53.00 51.00 34.00 54.00 51.00 52.00 34.00 51.00 32.30 1.27
2.00 50.00 50.00 53.00 00.00 32.00 50.00 50.00 51.00 33.00 51.00 31.00 1.16
2.25 50.00 50.00 52.00 50.00 51.00 50.00 50.00 50.00 31.00 31.00 50,.0 0.67
2.50 50.00 50.00 00.00 500 .0 500 0 50.00 51.00 50.00 50.10 0.30
2.75 30.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 0.00
0.00 50.00 10.00 30.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 0.00

For the software parameters, the output threshold was set to one. The training vectors were

loaded by class with 51 vectors from each class and a data seed of six. The number of nodes in

layer 0 was 50, while the number of nodes in layer 1 was 102 and the number of nodes in layer 2

was two. The transfer function for the nodes in layer 1 was gaussian while the transfer function

for the nodes-in layer 2 was linear. The weights linking layer 1 nodes to the layer 2 nodes were-set

using the PNN algorithm.

Tables E.19 and E.20 show the categorization performance of an RBF Kernel Classifier net-

work as the sigma, or spread, varied. The weights in the hidden layer were trained using the Nodes
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at Data Points algorithm.

'Table E.19. R13F Network Ttainin Performance vs Si ma
SISmg RunI Ru2 Run 3 Ru un R Run 6 Run 7 Run 8 n "RunlO Avg Std

______ %etrot %trot Z., .t %crat ccro t %rct %trot %erct %crct
0.21 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100000.00 0.00
0.80 100.00 100.00 100.0 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.00
0.75 100.00 100.00 100.00 100.00 98.04 100.00 100.00 100.00 100.00 98.04 99.61 0.78
1.00 100.00 91.18 100.00 100 1000 10 0.00 00 100.00 100.00 100.00 99.12 2.65
1.25 100.00 100.00 100000 100 0 100 0 0 100.00 100.00 99.61 1.18
1.00 1 000 1000 100.00 100.00 87.20 100.00 100.00 100.00 100.00 94.12 98.14 4.03
1.75 100.00 60.78 100.00 91.18 100.00 83.33 86.86 100.00 98.04 100.00 86.37 18.67
2.00 82.35 100.00 100.00 57.44 48.09 75.49 87.25 53.94 10.96 81.37 74.81 19.30
2.25 Z0.00 00.00 97.06 61.76 50.00 50.00 60.78 57.84 52.94 100.00 84.12 17.78
2.10 53.92 00.00 00.00 50.98 50.00 10.00 10.00 30.98 14.90 10.00 51.08 1.72
2.75 00.00 0'.0 0 0 0.98 0.00 10.00 00.00 80.00 01.96 00.00 00.29 0.63
3.00 80.00 3.2 00.00 10.00 00.00 00.98 00.00 80,98 70.19 098 02.85 8.09

Table E.20. RBF Network Test Performance vs Sigma
SIgm& Ru Ru 62 Ruu Run 4 fun A 6un 7 Ru n Ru n. 9 *un 1I Avr Std

%mrot %crtt %CM t rt %'rMt %rt t % %clct %crct %cict %cict %crt
0.25 74.00 73.00 32.00 77.00 79.00 84.00 84.00 85,00 86.00 88.00 80.90 4.850.00 78.00 73.00 82.00 79.00 80.00 84.00 88.00 8 :.00 88.00 88.00 82.00 4.78
0.75 82.00 75.00 8.00 0.0 7. 07.00 87.00 88.00 88.00 88.00 91.00 83.0 0.40
1.00 83.00 70.00 89.00 80.00 80.00 89.00 87.00 82.00 81.00 89.00 83.40 5. 1
1.25 82.00 74.00 90.00 80.00 77.00 87.00 88.00 81.00 84.00 87.00 83.00 4.88
1.50 82.00 74.00 90.00 79.00 89.00 87.00 90.00 81.00 85.00 84.00 82.0 8.39
1.0 79.00 47.00 89.00 87.00 80.00 89.00 53.00 83.00 82.00 87.00 71.60 13.07
2.00 70.00 71.00 9.00 01.00 49.00 89.00 79.00 0.00 50.00 07.00 63.50 13.39
2.25 00.00 50.00 9.00 81.00 50.00 50.00 0.00 44.00 5.00 88.00 9.00 14.94
2.50 50.00 45000 000 0 50.00 0000 4 5.00 57.00 69.00 01.40 1.90

2.75 50.00 49.00 0.00 00.00 00.00 0.00 50.00 50.00 00.00 00.00 49.90 0.30
3.00 150.00 85.00 5.0.00 50.00 50.0 00 7.00 47.00 52.00 64.00 45.00 51.80 5.10

For the software parameters, the output threshold was set at one. The training vectors were

loaded by class with 51 vectors from each class and a data seed of six. The number of nodes in

layer 0 was 50, while the number of nodes in layer 1 was 102 and the number of nodes in layer 2

was two. The transfer function for the nodes in layer 1 was gaussian while the transfer function

for the nodes in layer 2 was linear. The weights linking layer 1 nodes to the layer 2 nodes were set

using the global MSE minimization algorithm.

E.3 Radar System Characterization

This data consisted of 300 training and 1990, 6 dimension pattern vectors. These pattern

vectors represented one of ten radar platforms. Only Kernel Classifier networks were developed

to categorize this data. The networks consisted of a standard RBF network and an RBF-based

arbitrator network.

E.3.1 RBF Network The topology for this network is shown in figure 3.7. Table E.21 shows

the categorization performance of the RBF network trained to categorize the ten radar platforms.

This network consisted of 6 nodes in layer 0, and 155 nodes in layer 1, and 10 nodes in layer 2.

For the software parameters, the transfer function for each node in layer 0 was the identity transfer
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Tble E.21. -RBF letwork Performane
Classification % Correct

Threshold Training Test
.8 87.00 72.29
.6 89.67 77.91
.4 93.67 82.88
.2 93.67 82.88
.0 93.67 82.88

able-E.22. Net ork A Perfobrmnce
Classification % Correct

Threshold Training Test
.8 93.33 81.40
.6 94.67 88.50
.4 95.00 90.05
.2 95.00 90.05
.0 95.00 90.05

function, while the transfer function for-each -node in layer 1 was gaussian and layer 2 was linear.

The weights for the layer 1 nodes were set via the Center at Class-Cluster Averages algorithm with

the average threshold set at .03. The spreads were set using the Scale-Sigmas According to Class

Interference algorithm with the interference threshold set at .5. The weights linking the layer 1

nodes to the layer 2 nodes were set via global minization of the MSE.

E.3.2 Arbitrator The topology for this network is shown in figure 5.15. Table E.22 shows

the performance of Network A trained to categorize five radar platforms. This network consisted

of 6 nodes in layer 0, and 175 nodes in layer 1, and 6 nodes in layer 2. For the software parameters,

the transfer function for each node in-layer 0-was the identity transfer function, while the transfer

function for each node in layer 1 was gaussian and layer 2 was linear. The weights for the layer 1

nodes were set via the Center at Class-Cluster Averages algorithm-with- the average threshold set

at .03. The-spreads were set using the Scale Sigmas According to Class Interference algorithm with

the interference threshold set at .5. The weights linking the layer I nodes to the layer 2 nodes were

set via global minization of the MSE.

Tablc-E.23-shows the performance -of Network B trained-to categorize five radar platforms.

This network consisted of 6 nodes ifitlayer 0, and 173 nodes in layer 1, and 5 nodes in layer 2. For

the software parameters, the transfer function for each node in layer 0-was the identity transfer

function, while the transfer function for each node in layer 1 was gaussian and layer 2 was linear.
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ble E.23. Ne ork B Performance
Classification % Correct

Threshold Training Test
.8 87.00 78.33
.6 95.67 88.31
.4 98.67 92.64
.2 98.67 92.64
.0 98.67 92.64

The weights for the layer 1 nodes were set via the Center at Class-Cluster Averages algorithm with

the average threshold set at .01. The spreads were set using the P-Neighbors algorithm with the

number of neighbors set at .5. The weights linking the layer 1 nodes to the layer 2 nodes were set

via global minization of ,he MSE.

Table E.24 shows the performance of the total Arbitrator network trained to categorize the

ten radar platforms. This network consisted of 6 nodes in layer 0 feeding networks A and B. The

Tabl E.24. Arbitrati)n Network Perform ance
Classification % Correct

Threshold Training Test
.8 95.00 73.90
.6 98.33 81.43
.4 99.33 85.79
.2 99.33 86.35
.0 99.33 86.35

outputs of these networks were passed into Network C which consisted of 10, nodes in its input

layer, 75 RBF nodes and 10 output nodes. For the software parameters, the transfer function for

each RBF node was gaussian and each output node was linear. The weights for the RBF nodes

were set via the Center at Class-Cluster Averages algorithm with the average threshold set at .03.

The spreads were set using the Scale Sigmas According to Class Interference algorithm with the

interference threshold set at .5. The weights linking the RBF nodes to the output nodes were set

via global minization of the MSE.
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Appendix F. Software Analysis

F.1 Introduction

The software to be described in this chapter was designed according to the object-oriented

approach presented in Chapter 4. This chapter begins with a description of the data structures

implemented for the software and concludes with a discussion of the software modules and the

mapping of the training algorithms, developed in chapter 3, into software functions.

F.2 Object Oriented Structure

The structure of the software centered on the attributes of the nodes' weights, sigmas, con-

nections, transfer function and class listed in Chapter 4.

F.2.1 Weights A given node's weights are defined as the factor by which an output signal

from another node is multiplied before being processed by that node. For example, as shown in

figure F.1, node[2]-weight[1] would be the weight which multiplies-the output of node 1 prior to

entering node 2 for processing. Conversely, node[1]-weight[2] would-be the weight which multiplies

the output of node 2 prior to entering node 1 for processing. Finally, node[1]-weight[1] would be

the amplification factor for the output of a node[l] feeding back into node[l].

F.2.2 Sigmas A given node's sigmas are defined as the offset factor for a node with a

sigmoidal transfer function or, conversely, the spread factor, in a -particular direction, for the

gaussian transfer function. This factor thus controls a node's response to a given input. For

example, as shown in figure F.2, node[2]-sigma[1] would be the sigma factor for a signal -passing

from the output of node 1 to the input of node 2. Conversely, node[1]-sigma[2] would be the sigma

factor for a signal passing from the output of node 2 to the input of node 1. Finally, node-record[1]-

sigma[l] would be internal sigma for node 1.

F.2.3 Connect A node's connections to other nodes in the-network are defined as the con-

nection by which an output signal from another node is allowed to pass to that node. For example,

as shown in figure F.3, node[2]-connect[1] would-be set to a 1 if node 2 received output from node

1. Conversely, if node 2 did not receive node l's output, node[2]-connect[1] would be set to a 0.

Similarly, node[1]-connect[2] would be 1 if node 1 received node 2's output and 0 if node 1 did not

receive node 2's output. Finally, node[1]-connect[1] will be set to a 1 if node 1 to received input

from itself.
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node 1 node 2
output wght 2

node 2 wght 2

node 1 node 2
wght 1 output

Figure F.1. Node Weight Structure

node 1 node 2output sigma-2

( node 2 sigma 1

' node 1 siglna 2

node 1 node 2
sigma 1 output

Figure F.2. Node-Sigma Structure
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1node 1 node 2output connect 2 _

node 2 connect 1

, node I connect 2

node I node 2
connect 1 output

Figure F.3. Node Connection Structure

F.2-4 Transfer Function A given nodes output will be a function of the inputs, weights,

and sigmas connecting the node to the other nodes. Letting X, be the input vector for a given-

node, fv the weight vector, and a be the offset vector then the possible transfer functions -will be

the linear transfer function of the form:

f(x) = xw (F.1)

or a sigmoidal function of the form:

f( ) -" [1 +{ e-() '+')-  (F.2)-

or a gaussian function of the form:

(2) = -P (F.3)

or the identity function of the form:

f(xi) = xi (F.4)

However, any other applicable transfer function could also be assigned.
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F.2.5 Class A given node can be assigned a class to which the node is responsible for

responding. This is applicable to nodes whose transfer function is the gaussian function as well as

to output nodes.

F.3 Software Analysis

The software modules implemented in this theses are described in detail in the following

sections. The code for these modules is found in Appendix G.

F.3.1 NETMEN U This module is the overall controlling module of the network. It provides

-the user interface to the software via the SUN terminal and keyboard and calls the appropriate

modules to execute the network decision. NETMENU allows the selection -of the type of network

to be configured, the number of layers and nodes in the network, and the training rule of for

the weights of each node. Currently, the allowed training -rules for the weights in layer 1 are to

train the weights to match the features, center the weights at class averages, establish the weights

via the K-means algorithm, establish the weights via Kohonen training, or train the weights-via

backpropagation using the MSE, CE and CFE algorithms. Allowed training-rules for the weights

in layer 2 are matrix inversion and backpropagation using the MSE, CE and CFE algorithms and

the PNN Implementation. Allowed training rules for the weights in layer 3 are backpropagation

using the MSE, CE and CFE algorithms.

Once the-training rules are established, NETMENU will allow the transfer function, for the

nodes in each layer, to be selected. At this time, the only valid transfer functions are the identity,

the gaussian, the sigmoidal, and the linear transfer functions. Also, each node in the same layer

will be assigned the same transfer function.

If any of the layers are assigned the gaussian transfer function, NETMENU allows the selection

of a training rule for the thresholds or sigmas. At this time, the thresholds may be trained by setting

them to a constant, scaling the sigmas based on class interference, and setting the sigmas equal-to

the P-Neighbor average distances.

Once these parameters have been established, NETMENU will then preset the weights, sig-

mas, or outputs for the network, if desired, or randomly initialize the weights and sigmas. Any

preset data wilLbe-read- from input data-files specifying -the-appropriate reference number for the

node and the preset value.

After reading in both the training and test data files, NETMENU will then configure the

network by establishing the appropriate nodal connections-and assigning the nodes their appropriate
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transfer function.

From the selected training rule, NETMENU will then call the appropriate training function,

in NETTRAIN, to train the weights in each of the layers. Once the network has been fully trained,

NETMENU then establishes the accuracy of the network by calling NETERROR to apply both

the test and training data to the network, calculate the network output, and perform a percentage

calculation. This percentage calculation is made for the training data, test data and total data. A

correct response occurs when the appropriate node produces an output, above some user predefined

threshold, which is greater than all the other output nodes.

F.8.2 NETERROR This module contains the functions necessary to determine the networks

classification of a data vector and the error performance of the network.

F.3.2.1 Test The Network This function takes an unknown data vector from the call-

ing module, applies the data vector to the network and calculates the network output. If their

largest output for any node is below a predefined threshold, the unknown pattern will be assigned

a class of zero to indicate an unclassified pattern. If the largest output is above the threshold,

the unknown pattern will be assigned the same classification as that of the winning node. For

classifications in which the network class does not match the input data class, an error count is

updated.

F.3.2.2 Determine Class as Largest This function classifies the input data vector as

belonging to one of the possible-output classes providing the highest output is above some user

selected threshold. This allows the user to determine the point at which the network is allowed to

consider an input data pattern is classified.

F.3.2.3 Update Errors This function increments an error count for each time the net-

work classification does not match the proper classification of the data.

F.3.3 NETTRAIN NETTRAIN contains the submodules necessary to establish the network

weights via the following training procedures:

a) Global MSE Minimization

b) Make Nodes at Data Points

c) Center Weights at Class Averages

d) K-means Cluster
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e) Train via Kohonen

f) MSE Remaining Layers

g) CE Remaining Layers

h) CFM Remaining Layers

i) PNN Last Layer

j) Scale Sigma by Class Interference

k) Set Sigmas to Constant

1) Set Sigma at P Neighbor Avg

Each of these submodules accomplishes its training routine by executing the specialized functions

contained in NETAUX.

F.3.3.1 Global MSE Minimization Global MSE Minimization performs the optimiza-

tion of the weights linking the radial basis function nodes in the hidden layer to the nodes in the

output layer using the equations established in section 3.5. This submodule first calls-the function

"Determine Y Matrix". This function applies each data record in- the training set and calculates

the output for each of the L nodes in layer 1. That is, the output for each of the nodes due to the
pth pattern will be

you = [Ypl, Yp2Yp3, ... , YpL (F.5)

This process is accomplished for each of the P-patterns in the training set to produce -the matrix:

Y11 Y12 ... YIL

Y21 Y22 ... Y2LY = (F.6)

YPI YP2 ... YPL

Global MSE Minimization then computes the S matrix by calling the function-" Determine S Matrix"

to determine the required outputs for each of the M nodes in the output layer due to an input

pattern. This function tests the classification assigned to a data-record. If the class-of the data

record p is N, then the output of the (N - 1 )t h node in the output layer is assigned a value of 1

while all other nodes are assigned a value of zero:
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SP=[dpl, dP2, ... dPN ,d NdPN+1, ... dM] (F.7)

which -translates to

P =: [0, 0,.. 1,1001 , .. 0] (F.8)

This process is accomplished for each of the P records in the training set until a P by M matrix

is established where each pth row contains the desired output for the last layer nodes due to p th

input pattern.

dil d12  ... diM

d2 1  d22  ... d2M (F.9)

dp 1 dp 2 ... dpL

"Global MSEjMinimization" then calls the function "Determine M Matrix" to compute the sum-

mation of the product of the Bth output of a node in the first layer with the !9h output of a node

in the first layer over all P patterns. That is

MIB = E'P 1plYpB as defined in equation 0.61. Assuming there are L nodes in the layer,

the M matrix then becomes:

M11  M12  ... MIL

M M21  M 22  ... M2L (P.10)

MLI ML2 ... MLL

After executing the function "Make Identity Matrix" to form an L by L identity matrix as:

1 0 ... 0

0 1 ... 0
N= (F.11)

0 0 ... 1
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"Global MSE Minimization" then calls the function "Determine Matrix Transpose" which takes

the M matrix and returns its transpose back as a new M matrix. "Global MSE Minimization"

then uses the function "Invert a matrix" to invert the transpose of M. This inverted matrix is

returned to as the N matrix. "Global MSE Minimization" then computes the optimal value for

each weight by calling the function "Caiculate Weight Matrix". This function uses the values in

the Y, S and inverted M matrix to perform the optimal weight linking node B in layer 1 to node

D in layer 2, WBD, as:

L P

WED = ( YpdpD)NB1 (F.12)
1=1 p=1

This calculation is made for each weight linking a node in layer 1 to a node in layer 2.

F.3.3.2 Make Nodes at Data Points This module sets the weights of the nodes in the

first layer equal to the features of the input patterns. This module begins by applying a data record

to the network. "Nodes at Data Points" then- calls the function "Calculate Layer 1 Output" to

determine the output for each node in layer 1. "Make Nodes at Data Points" then compares the

output-of each node in layer 1 to the predefined -threshold Tnm0 , and the class of each node in layer

1 with the class of the input pattern. If the output for a node is greater than Tma, and-the class

for that node is the-same as that of the input pattern, no-new node is added. If not, a-new node

is added whose weights match the input pattern features. This-process continues for each training

vector.

F.3.3.3 Center Weights at Class Averages This module incrementally adapts the weights

of the--nodes in layer 1 to the running average of the data records lying within a threshold Tma,,

of the current center. This module begins by applying a training vector -to the network. "Cen-

ter Weights at Class Averages" then calculates-the distance from all the nodes in layer 1 to that

training vector by the equation:

K
di= (Xk - wlk) 2  (F.13)

k=1

If-thisdistance for a-node less than the-Tmar, "Center Weights at Class Averages" calls the-function

"Update Average" to-update the current weights of that node by the equation:

Xk - Wk. (F.14)
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If the distance between a training vector and all the nodes in layer 1 is greater than Tn,, "Center

Weights as Class Averages" will create a new node and assign the weights of the new node the

features of the training vector. This process-will continue until all records in the training set have

been processed. "Center Weights at Class Averages" will repeat this process of cycling through the

training data and updating and creating new nodes until no new nodes are created. At this point,

the entire feature space is now covered by the nodes in layer 1.

F.3.3.4 K-Means Cluster This module adapts the weights of the K nodes in layer

1 to be the centers of K clusters. K-Means Cluster begins by the setting the weights of the K

cluster nodes in layer 1 equal to the features of the first K vectors. "K-means cluster" then applies

a training vector to the network and calls the function "Find Nearest Neighbor". This funetion

computes-the distance from each input record to each of the K nodes in layer 1 by the equation

K

dl-= Z(Xk 2  (F.15)
k=1

This function returns the reference number of the node in layer 1 with- the closest distance to the

input vector. "K-Means Cluster" then assigns the input vector to the cluster of the closest node

in layer 1. This process of inputting a training vector, finding the node whose weights are the

closest to that -particular training vector, and assigning this training vector to the cluster whose

node has- the closest weights is repeated until all training records have been processed. For each

cluster node in layer 1, "K-means cluster" then takes the training vectors assigned to that node's

cluster and repeatedly calls the function "Update Average". This function updates each weight to

a new -average by the equation

k 1  +k - (F.16)w~~wl+N+1

After all training patterns assigned to the cluster of a node have been processed, each of the node's
weights will contain the average of the features of the pattern vectors- assigned to that cluster. After

this adjustment, "K- means cluster" tests the difference between each of the cluster's old weights

and new weights via the equation

If the difference is not less than some small value c, for all nodes' weights, the clustering algorithm
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Figure F.4. Kohonen Training Eta Adaption

has not converged and this process of applying a training vector, finding the closest cluster node,

and updating the weights of the cluster nodes to be the average of the input pattern vectors assigned

to the cluster will then be repeated. If the difference is less than E, the algorithm has converged.

F.3.3.5 Train Via Kohonen This module adapts the weights in the first layer by using

the Kohonen algorithm defined in section 3.5. "Train Via Kohonen" first calls the function "Get

Random Class Record" to return a training vector from the training set with an equal probability

according to a uniform probability distribution. "Train Via Kohonen" then applies the data record

to the network and calls the function "Calculate Distance From Outputs To Next Layer". Assuming

there are K nodes in layer 0 and J nodes in layer 1, this function performs the calculation

K

= Zxk - wkj) 2  (F.1)
k=1

These distance values are stored and returned to "Train Via Kohonen" which then calls the function

"Find Nearest Element" to return the number of the node which had its weights "closest" to the

features of the input pattern. The module "Train Via Kohonen" then calls the function "Get Linear

Training Eta" to return the learning factor based on the saw tooth function as shown in figure F.4.
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17 - . . io) + 77max (F. 19)
t- tmax

Here

17 = the learning constant.

77max = the maximum r which occurs at the beginning of the interval.

io = -the iteration number at the beginning of the interval.

ima: = the iteration number at the end of the interval.

i = the current iteration number.

Once the 7 is returned "Train Via Kohonen" then executes the function "Get Kohonen Neighbor-

hood". This function returns the neighborhood number of the-nodes which are in the neighborhood

of the winning node. The neighborhood is determined by the iteration number as follows:

neighborhood = 7 for 0 < iterations < 5000

neighborhood = 5 for 5000 < iterations < 10000

neighborhood = 3 for 10000 < iterations < 15000

neighborhood = 1 for 15000 < iterations < 20000

"Train Via Kohonen" then calls function "Find Kohonen- Boundaries" to check the kohonen layer

boundaries to ensure that the length of the neighborhood does not exceeded the boundaries. "Train

Via Kohonen" will determine which nodes will be updated -by- invoking the function "Determine

Neighborhood Elements" and update each of these node weights by executing the function "Train

Kohonen Weights". This function updates each of the required nodes by the equation

Wt = w7 +7(Xi - W) (F.20)

"Train Via Kohonen" repeats this-functional execution for the selected number of iterations.

F.3.3.6 MSE Remaining Layers This module performs the backpropagation of the

error to adjust the network parameters for the weights and sigmas for each node in the -network.

"MSE Remaining Layers" first calls the function "Get Random Class Record" to obtain a-random

training pattern from one of the- classes according to uniform probability distribution. "MSE Re-

maining Layers" then invokes "Feed Forward Network Output" to calculate the network output.
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After the network output is calculated, "MSE Remaining Layers" determines the difference be-

tween the desired network-output and the actual network output, or error, by calling the-function

"Calculate Errors In -Output". This function compares the output of each node in the output layer

to their desired output for that pattern. This comparison is done-by the following equation:

I ym - dm J> tma? (F.21)

Here tma, is the maximum threshold, currently set to .9, Ym is the output for node m in the output

layer and dm is the desired output for node m in the output layer. If all the output nodes meet

this criteria no weights are updated and this -process is repeated for another random record. If

any of-the output nodes don't meet this criteria, "MSE Remaining Layers" will then update the

remaining network layers parameters via backpropagation according to the MSE algorithm. If the

-transfer function for the -last layer nodes are sigmoidal, their weights and sigma will be updated by

the equation

W N MN+ ( - YN)YN(1 - YN)(YM) (F.22)

and

0'+ + .!?(dN-- yN)yiv(1 - yN) (F.23)

If the transfer function is the linear transfer function, the node weights and threshold in the last

layer will be updated via the equations

MN = WMN+ N - YN')(I',) (F.24)

"MSE Remaining Layers" will then call the-function "MSE Mid Layer" to update the weights and

sigmas for the nodes in the next to the last layer of the network via the equations

N

WM = WLM + I E(dn -Y)y(1 -Y.)WM.VM(1 -,M)Y (F.25)

and-
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N
+= O + -E(dn - yn)yn(l - yn)WMnyM(1 - YM) (F.26)

Nn=l

After the weights for the next to last layer have been updated, "MSE Remaining Layer" will then

call function "MSE-1st Layer", if required, to update the weights-of the first layer. Currently, for

a three layer network, all nodes must have the sigmoidal transfer function. Therefore "MSE 1st

Layer" will update the node weights and thresholds via the equations

N M

wKL = WiL + IV E(d - y,)Yn(1 - yn)[E _ nmy.(1 - y)WLmYL(l - YL)YKI (F.27)
n=1 m=1

and

N M

L= " + -1 '( - yn)yn(l - y.)[Z WnYm(1- Ym)wLmYL(1 - YL)] (F.28)
n=l nm=1

After the first layer parameters have been updated "MSE Remaining Layers" will continue this

backpropagation until the required number of iterations are achieved.

F.3.3.7 CE Remaining Layers This module performs the backpropagation of the error

according to the CE algorithm to adjust the network parameters for the weights and sigmas for each

node in the network. "CE Remaining Layers" first calls the function "Get Random Class Record"

to obtain a random training pattern from one of the classes according to a uniform probability

distribution. "CE Remaining Layers" then invokes "Feed Forward Network Output" to calculate

the-network output. After the network output is calculated, "CE Remaining Layers" determines

the difference between the desired network output and the actual network output, or error, by

calling the function "Calculate Errors In Output". This function compares the output of each

node in the output layer to their desired output for that pattern. This comparison is done by the

following equation.

I ym- dm J> t... (F.29)

Here tma is the maximum threshold, currently set to .9, ym is the output for node m in the output

iayer and dm is the desired output for node m in the output layer. If all the output nodes meet this

F- 13



criteria no weights are updated and this process is repeated for another random record. If any of

the output nodes don't meet this criteria, "CE Remaining Layers" will then update the remaining

network layers parameters via backpropagation according to the CE algorithm. "CE Last Layer"

is called first to update the nodes in the last layer by the equation

N"= W .N + 2.3N - YN)(YM) (F.30)

and

aN =O-N+ T.3N dN -YN)(F.31)

The factor of 1/2.3 is due to the multiplicative factor 1/ln(10) from the derivative of the CFE

objective function. "CE Remaining Layers" will then call the-function "CE Mid Layer" to update

the weights and sigmas for the nodes in the next to the last layer of the network. "CE Mid Layer"

will update-the weights via the equation

N

WM =  M - Y.)WMnyM(1 - YM)YL (F.32)

and

N

a+ = 0-m + 77 Z(dn -Yn)wMnYM(1 - IJM) (F.33)
M 2.3Nn=1

After the weights for the next to-last layer have been updated, "CE Remaining Layers" will then

call function "CE Last Layer", if required, to update the weights of the first layer. This function

updates the via the equations

N M

W+L = WKL + E -(d - y M)[E - Ym)WLmYL(1 - YL)YK] (F.34)
KL=WL+2Vn=l M=l

and

N M

1+ = + a- 37 Z(dn - Y")[Z ,Winym(I - Ym)WL.YL(I - YL)] (F.35)
n=1 

rnm=1
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After the first layer parameters have been updated "CE Remaining Layers" will continue this

backpropagation until the required number of iterations are achieved.

F.3.3.8 CFM Remaining Layers This module performs backpropagation according to

the CFM algorithm to adjust the network parameters for the weights and sigmas for each node

in-the network. "CFM Remaining Layers" first calls the function "Get Random Class Record"

to- obtain a random training pattern from one of the classes according to a uniform probability

distribution. "CFM Remaining Layers" then invokes "Feed Forward Network Output" to calculate

the network output. After the network output is calculated, "CFM Remaining Layers" determines

the node in the output layer with the largest output by calling the function "Determine Network

Class". This function assigns the network's classification as-the largest value of the nodes in-the

output layer by the equation

class-= Yi.,.. (F.36)

where t man = the output- threshold. If the network's class is not the class of the training vector or if

the difference between the correct node's output-and the next highest node's output is less than the

user predefined difference, -the network nodes are updated according to the CFM algorithm. "CFM

Remaining Layers" will then update the remaining network layers parameters via backpropagation

according to the CFM algorithm. "CFM Last Layer" is called first to update incorrect node in-the

last layer by-the equatio:

Wj+ 7J3Y.(F37

MN = WMN - N I ZN1 - ZN)YN(1 - YN)(YM) (F.37)

and

UN- -1 ZN(zN)yN(1 - Y) (F.38)

while the correct node's weights and threshold are updated- according to the equation

N

W 0c = w.C + N - zn(1 - z.)yc(1 - YC)(YM) (F.39)
n=1

and
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N
-+ = W- + (F.40)

n=1

"CFM Remaining Layers" will then call the function "CFM Mid Layer" to update the weights and

sigmas for the nodes in the next to the last layer of the network. "CFM Mid Layer" will update

the weights and threshold via the equations

LM WM + N-lE z(1 - zn)[YC(1 -yC)WMe -y(1- y)wM]yM(1- YM)YL (F.41)

and

+ N
o+ = am, + N 1 z.(1 - zn)[yc(1 - yc),wmc - yn(l - yn)wMn]yM(i - YM) (F.42)

After the weights for the next to last layer have been updated, "CFM Remaining Layers" will then

call function "CFM First Layer", if required, to update the weights of the first layer. This function

updates the weights and thresholds via the equations

KL = WL + V ' °z(1 - zn)[yC(1 - yc) M
n=l m=1

Af

Y(1 - Y.) E Wm.]y(1. y-)yL(1 - YL)YK (F.43)
m=1

and

N M

cT1 =OT+ 77# Ezn(1- zn)[YC(1-YC)Ewmc
N I +=1 m

M
-Yn(1 - Yn) E Wmn]ym(l - YM)YL(i - YL) (F.44)

m=1

After the first layer parameters have been updated "CFM Remaining Layers" will continue this

backpropagation until the required number of iterations are achieved.
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P.3.3.9 Scale Sigmas by Class Interference This module scales the sigmas, for nodes

in layer 1 containing radial basis functions, if required, by a constant. This module begins by

applying the training vectors to the network and calling the function "Calculate Layer 1 Output?'

to calculate the outputs from the nodes in layer 1. "Scale Sigmas by Class Interference" then

compares the output of each node- in layer 1 with the threshold Tma,. If the output for a node is

greater than Tma_: and that node is not assigned the same class as that of the input pattern, that

nodes sigma is scaled by the equation:

a+ = o-(1 - Constant) (F.45)

"Scale Sigmas by Class Interference" will continue to reduce the o for that node until the output

is less then Tma.,. This process is repeated for all the training vectors in the training set.

F.3.3.10 Set Sigma at P Neighbor Avg- This module sets the sigma for each node in

the first layer equal to the root mean-square of the distance between that node and its P nearest

neighbors. This module begins by calling the function "Find Distance Between Nodes". This

function calculates the distance between -the nodes in layer 1 by the equation:

K
dii = (Wki - Wkl) 2  (F.46)-

k=1

After the distances between all the nodes have been calculated, "Set Sigma at P Neighbor Average"

will then call the function "Sort 2 Dimensional Array" to find the P shortest distances for-each

node. "Set Sigma at P Neighbor Avg" will then calculate the sigma for each node by the equation:

0 = (F.47)

F.3.3.11 Set Sigmas to-Constant This module sets the sigma for each node in layer 1

to a predefined constant C by the following equation:

o- = Constant (F.48)

F.3.4 NETINPUT This module contains the functions necessary to load the training and

test data files. This data may be loaded-from a separate training and test file or a single file. This

method of loading the data is controlled- by the function "load input patterns".
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F.3.-4.1 Load Input Patterns This function allows the user to control how the test and

training data is to be loaded. Currently, the function "Load Separate Files" allows the user to

load the training and test data from separate files either in sequence or randomly. The function

"Load From Single File" allows the user to load the training and test data from a single file either

in sequence of randomly. The function "Load By Classes" allows the user to control the number of

training vectors assigned to each class. This is important if the number of training vectors must

reflect the a priori probability of the input data. These data vectors will be randomly selected from

a single file of input data.

F.3.4.2 Get Data This function loads the input data into the training and test data

structures. The training and test data structures contain an array of the features of the input

patterns, the class of the pattern, and the sequence number in the input file.

F.3.4.3 Normalize Data This function allows the user to normalize the-input data via

the equation:

x (F.49)

F.3.4.4 -Get Weights, Sigmas, Classes, and Outputs These functions load initial weights,

sigmas, classes and outputs from an input-file. This is important for applications in which the initial

conditions of the network are known a-priori.

F.3.5 NETINIT This module contains the functions which allocate memory for the nodes

and data records, correct node weights and- connections, and initialize the node weights, sigmas,

transfer functions and network connections.

F.3.5.1 Initialize Node Weights This function initializes the node weights between

each connected node in the network to a value between 0 and 4. For nodes not connected, the

weights are set to 0.

F.3.5.2 Initialize Node Connections This function connects the nodes in-the network

as defined by the network type. Currently, the only network type allowed is the feedforward

network. For this network, the nodes in layer 0 will receive inputs from no other nodes and there

connections to all other nodes will be assigned 0. The nodes in layer 1 will only be connected to

and receive inputs from the nodes in layer 0. The nodes in layer 2-will only be connected -to and
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receive inputs from the nodes in layer 1. The nodes in layer 3 will only be connected to and receive

inputs from the nodes in layer 2.

F.3.5.3 Initialize Node Sigmas This function initializes the sigma between each node

in the network to a value between 0 and 1;

F.3.5.4 Initialize Node Outputs This function initializes the outputs for each node in

the network to a value of 0.

F.3.5.5 Initialize Node Transfer Functions This function initializes the transfer func-

tions, as defined by the user, for each node in the network.

F.3.5.6 Create Node This function allocates enough memory to hold the "Node Data"

data structures for each node in the network.

F.3.5. 7 Create Data Record This function allocates enough memory to hold the "Data"

data structures for each training and test input data vector.

F.3.5.8 Disconnect Node This function will disconnect any nodes in the network from

all other-nodes if the node is not being used. This is important for applications in which the number

of nodes in-the network is not known apriori and pruned as a result of network learning.

F.3.5.9 Correct Node Weights This function limits the range of a node's weights to

a value between -100 and 100. This is important-to prevent backpropagation training algorithms

from saturating the transfer functions during training.

F.3.6 NETSHOW This module contains the output functions necessary to display and file

the performance and parameters of the network.

F.3.6.1 Print/File Network Output These functions show the current output for the

final -layer of-nodes in the network.

F.3.6.2 Print/File Data Parameters These functions show the name of the training

and test data-files, the number of data vectors in each file, and the dimension of the data vectors.
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F.S.6.3 Print/File Randomization Rule These functions show the randomization rule

selected to load the input data. If the randomization rule is to "Load By Class", this function will

also display the number of training patterns selected from each class.

F.3.6.4 Print/File Seeds These functions show the initial weight, sigma, data, and

record seeds used to set the randomization rules for the network parameters. The weight and

sigma seeds control the initialization of the network weights and thresholds. The data seed controls

the randomization of the input data vectors while the record seed controls the presentation of the

data vectors for the backpropagation algorithms.

F.3.6.5 Print/File Net Topology These functions show the current topology of the

network, including the type of network, the number of layers in the network, and the number of

nodes in each layer. This is important in the monitoring of the network topology for networks in

which the number of nodes is adapted according to the data parameters.

F.3.6.6 Print/File Transfer Functions These functions show the transfer functions for

each layer of nodes in the network.

F.3.6.7 Print/File Node at Data Points Data These functions show the number of

nodes, output threshold, and the initial sigmas for the nodes in layer 1 when trained using this

training rule.

F.3.6.8 Print/File Center at Class-Cluster Averages Data These functions show the

initial parameters of the maximum number of initial nodes, the average threshold and sigma thresh-

old used to train the nodes in layer 1 using this training rule.

F.3.6.9 Print/File K Means Data These functions show the number of clusters used

to establish the node 1 weights when the K-Means algorithm is used to train the weights for the

layer 1 nodes.

F.3.6.10 Print/File Kohenen Data These functions show the parameters for the num-

ber of nodes in x and y direction, the number of training iterations, the neighborhoods, and scaling

factors used to train a layer of nodes using the Kohonen algorithm.

F.3.6.11 Print/File MSE Data These functions show the parameters for the number

of iterations, the learning factor, and the momentum factor used to train a layer of nodes using the
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backpropagation algorithm according to the MSE objective function.

F.3.6.12 Print/File CFM Data These functions show.the parameters for the number

of iterations, the learning factor, the momentum factor, the amplification factor, the offset factor

and the lateral shift factor used to train a layer of nodes using the backpropagation algorithm

according to the CFM objective function.

F.3.6.13 Print/File CE Data These functions show the parameters for the number of

iterations, the -learning factor, and the momentum factor used to train a layer of nodes using the

backpropagation algorithm according to the CFM objective function.

F.3.6.14 Print/File Sigma Data These functions show the training rules and param-

eters of the sigma threshold, sigma constant, and number of nearest neighbors used to train the

spreads of thresholds of nodes having the gaussian transfer function.

F.3.7 NETOUT This module contains the functions necessary to compute the outputs for

each node-in the network, the outputs for each layer of a feedforward network, and the output for

the entire network due to a given input pattern.

F.3.7.1 Calculate Feedforward Network Output This function calculates the network

output due to a given input vector by calling the applicable output functions for each layer of the

network.

F.3.7.2 Calculate Layer 0 Output- This function establishes the range of nodes in layer

0 and calls "Calculate Node Output" to calculate the output for each node in layer 0. This output

will depend on the transfer function assigned to each node in layer 0.

F.3.7.3 Calculate Layer 1 Output This function establishes the range of nodes in layer

1 and calls "Calculate Node Output" to calculate the output for each node.in layer 1. This output

will depend on the transfer function assigned to each node in layer 1.

F.3.74 Calculate Layer 2 Output This function establishes the range of nodes in layer

2 and calls "Calculate Node Output" to calculate output for each node in layer 2. This output

will depend on the transfer function assigned to each nc 'e in layer 2.

F-21



F.3. 7.5 Calculate Layer 3 Output This function establishes the range of nodes in layer

3 and calls "Calculate Node Output" to calculate the output for each node in layer 3. This output

will depend on the transfer function assigned to each node in layer 3.

F.3.7.6 Calculate Node Output This module computes the output for each node in the

network as determined by the transfer function and the other nodes from which the node receives

input. Currently, a node's transfer function can either be the sigmoidal transfer function of

out = [1 + e D ,] (F.50)

or the-gaussian radial basis function of

yout = e- (F.51)

or the linear transfer function of

L

yout = Lwiyi(in) (F.52)
1=1

or the identity transfer function in which

Yout = Yin (F.53)

F.3.8 NETA UX This module contains the functions called by NETTRAIN to-set the net-

work parameters. Below is the list of functions maintained in this module.

1) Determine Y Matrix

2) Determine S Matrix

3) Determine M Matrix

4) Calculate Weight Matrix

5) MSE Last Layer

6) MSE Last Layer Linear

7) MSE Last Layer Sigmoid

8) MSE Mid Layer
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9) MSE 1st Layer

10) Calculate Errors in Output

11) Get Linear-Training Eta

12) Get Kohonen Neighborhood

13) Calc Dist Outputs to Nxt Lyr

14) Find Nearest Element

15) Find Kohonen Weights

16) Determine Neighborhood Elements

17) Train Kohonen Weights

18) Find Distance Between Nodes

19) Sort 2 Dim Array

20) CE Last Layer

21) CE Mid Layer

22) CE First Layer

23) Calculate Zn

24) CFM Last Layer

25) CFM Mid Layer

26) Find Second Highest Node

27) CFM First Layer

28) Find Nearest Neighbor

For-a detailed discussion of these functions, see NETTRAIN or Appendix G.

F.3.9 NETMATH This module contains the mathematical functions used by the various

training algorithms within the module NETTRAIN.

F.3.9.1 Make Identity Mairix This function returns a square identity matrix to-the

calling routine. The number of rows and columns in the matrix and the address of the matrix must

be passed to this function for proper execution.
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F.3.9.2 Determine Matrix Transpose This function returns the transpose of a matrix.

The calling function must provide the addresses of the matrix to be transposed and the matrix

transpose, along with the number of rows and columns of the matrix.

F.3.9.3 Invert A Matrix This function returns the inverse of a square matrix. The

calling function must provide the addresses of the matrix to be inverted and the final inverted

matrix along with the number of rows in the matrix. The matrix inversion is completed via

gaussian elimination.

F.3.9.4 Update Average This function computes the running average of a series of

data points. The calling function must provide the current average, the next data point to be

incorporated into the average and the number of data points within the average. The update

equation is as follows:

fit = jj + I(xi - j1)(F.54)

F.3.9.5 Update Sigma This function computes the running standard deviation of a

series of data points. The calling function must provide the current average, the next data point

to be incorporated into the standard deviation, the current standard deviation and the number of

data points in the calculation. The update equation is as follows:

= /o+ - 7)(xi - - os1) (F.55)

F.3.9.6 Calculate Percentage This function computes the percentage a ratio of num-

bers. The calling function must provide the numerator and the denominator of the numbers.

F.3.9.7 Get Random Class Record This function randomly selects, according to a

uniform probability distribution, one of the possible classes and randomly returns a data vector

from the selected class.

F.3.9.8 Gil Random Record This function randomly selects, according to a uniform

probability distribution, a 4ata vector from the set of training data.
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Appendix G. Software Code

G.1 NETMENUE

/* Module Name: NETNENUE Number:1 5

-I. Description: This module is the overall controlling module of *
of the software. It provides the user interface *

Is to the software via a SUN workstation terminal *
is and keyboard. This module calls the appropriate 5

modules to execute user desisions. *
/* Modules Called: NETERROR, NETTRAIN, NETINPIJT, NETINIT, NETSHOW .
/* Functions Contained: lone *
/* Date: 11 Nov 90 Revision: 1.0 5

#include 'netvrble .h"
#include "neltfnctn .h"

main()

FILE *fptr, *train..ptr, *test..ptr, *user..ptr;
FILE *NSE..ptr, 5CE..ptr, *CFN..ptr;
struct data *training..dataETRAIN..SETJ;
struct data *test-dataETEST..SET];
struct lode-.data *Node..recordTOTIL.NODESJ;
float output-.threshold = 1;
float average-.threshold - 2;
float sigma-.threshold = 4;
float sigma-factor a.5;
float interference.threshold u.8;

float NSE.error..delta = .2;
float class-threshold =0;
floav per..cent..correct = 0;
float sigma-.constant = 2;
float NSE..eta a .3;
float CFN..alpha = 1;
float CFK-beta = 4;
float CFM-eta =3;
float CFN..zeta = 0;
float CFM~momentum = .1;
float CF-delta = .4;
float CE.epsilon = .1;
float CEiterations =20000;
float CE..momentum = .1;
float CE..eta = 2.76;
float NSE..momentum = .1;
static mnt neighborhoods(6J ( 7,5,3,11;
static int train..width[6J = (0, 5000, 10000, 15000, 20000};
static float train..scale[6J ( .1, .05, .025, .01251;
int misclassified E200J;
mnt train-.error =0;

int test-.error = 0;
mnt total-.error 0;
mnt correct-.class = 0;
mnt netuork..class = 0;
imt vidth..no =5;

int nodes..x =10;

mnt nodes.y 0;
mnt p..neighbors =0;
int train-.set =TRAIN-.SET;

mnt test-.set =TEST-.SET;
int classes = CLASSES;
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jut dimension = DIMNSION;
int node;
jut record, row, X, y, layer, startig-..ode..iu.layar[43;
iut number,of..layers;
int- uodes-.in-.layer[4), training-rule[4), transfer..function[4J;
jut network..type = 0;
jut total-n.odes 0;
int preset = 0;
jut sigma-rxule = 0;
int int..buffer = 0;
int total-.iterations = 0;
int current-nuode =0;
int XSEjterations = 0;
jut kohoneu..jterations =0;
jut rtodes4..max = 0;
jut nodes..2-max =0;
int nodes.3max = 0;
jut error U 0;
iut CFl-successes = 100;
jut CFN..terations = 20000;
jut CE..successes =100;
jut randomization-.rule = 0;
jut traiing.pattersi..class[CLSSESJ;
jut XSE..successes = 100;
jut class = 0;
jut fiud-the.distance = 0;
jut uorzalize-the..data =0;
unsigned data-.seed =0;
unsigned sigma-.seed = 0;
unsigned vght..seed = 0;
unsigned record..seed = 0;

/****e**i****TEST STUFF eeeeeeeeeeeeseeeeeee*/

static char traiu..file[J = "class2in";
static-char test..fileO] = 'class2.iu"s;
static char output-fileE) = "nodestest.out";
static char selectiou..file[J = "nodes.test.sel";
static char MSEfile[) = "MSE-.data.out";
static char CF-file[) = "beta4data";
static char CE.file[) = "CE..data-.final';

normajize-the..ou.a =0; /* I1 yes *
find-the-.distance = 0; /* I =yes *

dimension -60;
traiu-set c102;
test..set- 100;
classes- 2; 1* Randomization Rule *
randomization-.rule =3; /* 1 - load separate-files *

/* 2 - load from single-file t/1
/*- 3 - load by class *

training-patterns-in-.class [1). = 51;
'traiuiigpatters.i...~lass [2) =-61;
training.patterns-in..diass [3) = 0;
training.patterus. luclass [4) -=-
-tfaiujzng..patterns~i~clasu[S3 0;
training.patternsj.;in-class [63- 0;
-train ingpatt erns- iu..cJ ass [72 0 ;-
training-patterns.inclas..[8Ju 0;
traiig-.patterns..iu.class[9] 0;
trainrg-p~tters-iu..class [I0] =-O;

ught-.seed 0; sigma-.seed =0; -data-soed =t;record-.seed- 1;
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network-.type =1; number-.of..layers 2;

nodes..in.layer[03=dimension;
nodes-in.layer~l]=60,
nodes..in..layer[2J=2;
nodes..in-.layerE3J 0;

training..rule E0J=0;

-training..rule Ei)1;
/* 1-nodes at data points 2-center class average 3- K-means *
/* sig-thres, out-thres avg-thresh sigthresh sig rule 3or4 *

/* 4-kohonen 5-MSE backprop 6-CFN backprop 7-CE backprop *
/* nodes..x MSE stuff CFN stuff CE stuff *

.raining..rule (2) = 1;

/* 1 - matrix invert 2 - MSE backprop 3-CFM backprop 4-CE backprop *
/* 5 - Parzen window MSE stuff CFM stuff CE stuff a

training.rule (3) = 0;

/* I - MSE backprop 2 -CFM backprop 3-CE'backprp, 4-Parzen window *
/s SE stuff CFM stuff CE stuff

sigma-.threshold = 4; -kohonen-.iterations = 20000;
output-.threshold = 1; nodes.x = 7;
average-.threshold =2;

XSE-.iterations =30000; CFN..alpha = 1.0; CE.epsilon=- .05;
iSE.error..delta = .1; CFl-bota = 4.0; CE.iterations = 30000;
MSE..momentum = .1; CFl-eta .1A4; CE-momentum = .05;

-MSE..eta = .3; CFN..zeta =-0; CE-eta = 1.75;
MSE..successes = 100; CFM..successes =100; CE-.successes = 15000;

CFW..iterations = 150000;
CFM-mromentum = .1;
CFM-delta = 1.0;

transfer..function[(0J 0; /* 1- sigmoidal 5

transfer.function(1J = 2; /* 2 -rbf 5

transfer-functionE2J = 3; /* 3- linear *
transfer.fundtion[3J = 0;

sigma-.rule = 1; /* Sigma rules 1 scale by constant a
Is interference-.threshold .8;

/* sigma-.factor = .5; 5

interference-.threshold =.4;
sigma-.factor = .1; /a 2 - half nearest neighbor 5

sigma-.constant = .5;
p-.neighbors = 6; 1* 3 - constant

/s sigma-.constant = 2; 5

1* 4 - p neighbr average *
1* p-.neighbors =4;

:for (x = 0; x < train-set; X++)

create..data..record(training-.data,

kerror);
if(error !=0)
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printf("\n***** out of memory for training-.data *******\n");
exit C)

for U(z 0; x < test-set; x++)

create..data..record(test.data,
X,

&error);
iferror != 0)

'printf('\n**** out of memory for test data *****\n");
exitO;

train..ptr =fopen(train..file,ur");
test..ptr =fopen(test..file,"r");

load-input-patterns (training-.data,
test-.data,
train-.set,
test-set,
dimension,
classes,
training.patterns-.in..class,
randomization-.rule,
data-.seed,
train..ptr,
test-.ptr);

fclose(train.ptr);
fclose(test-ptr);

if(normalize-the-data ==1)

normalize-data(training.data,
train-.set,
dimension);

normalize-data(test..data,
test-.set,
dimension);

if Cfind..the..Aistance ==1)

fptr =f open C"nrmtrain .dat", "w");
fprintf(fptr,"\n normalized Distances for Training data");
calculate.euclidean.distance.between..inputs training..data,

train-.set,
dimension,
fptr);

fclose(fptr);

fptr = fopen("nrmtest .datII,IIvII);
fprintf(fptr,"\n normalized Distances for Test data");
calculate-.euclidean.distance.between-.inputs (test..data,

test-.set,
dimension,
fptr);
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fclose(fptr);

user-.ptr = fopen(selectionfile,"u");

nodes-1.max = nodes-.in..layer~i];
nodes.2max = nodes..in-.layer [2);
nodes.3max - nodes..in..layer [3];

total-nodes = nodes..in..layer [0);
start ing.node.in-.layer [0] = 0;

for (layer = 1; layer < number..of-.layers +1; layer++)

at art ing..node..ln.layer (layer] start ing-.node.in-.layer[layer-iJ
+ nodes..in-.layer~layer-l]J

total-nodes = total-nodes + nodes-nlayer~layer3;

error = 0;
for (node = 0; node < total-.nodes; node++)

create-.node (Node-.record,
node,
Aerror);

if (error !=0)

printf("\nout of memory");
exitO;

initialize-nod..connections (Node..record,
number-.o-layers,
nodes-.in..layer,
st art ing..node..in..layer,
network-type,
total-.nodes);

initialize.node..veights(Node-record,
total-nodes,
vght..seed);

initializenode.simas(Node..record,
total-.nodes,
sigmna-.seed);

initializenode.outputs (Node..record,
total-.nodes);

injtialize.node.transfer.function(Node-record,
nuinber..of..layers,
nodes-.in-.layer,
starting.node..in..layer,
transfer-funct ion);

file-ata-parameters (train-.file,
test-.file,

train-.set,
test-.set,
dimension,
classes,
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user..ptr);

:file.raidomizatjon..rule (mndomization..rule,
training..patterns..in..class,
classes,
user-ptr);

file-.seeds(wght-.seed,
sigma-.seed,
data-.seed,
record-.seed,
user..ptr);

fprintf (user..ptr, 11\ustart ing network topology");
file..net..topology (network..type,

number.of..layers,
nodes-n-.layer,
user..ptr);

iile-.transferdfunctions (network-.type,
rnumber-.of.layers,
start ing..node.in-.layer,
-Node,record,
user..ptr);

for (layer =1; layer < number..of..layers +1; layer++)

if (layer ==1)

switch (training-.rule[layerJ)

case 1:
make..nodes-.at-data-.points (training-dAata,

Node-.record,
train-.set,
nodes-.in..layer,
sigma-.threshold,
output-.threshold,
starting.node.in-.layer,
total-.nodes,
nodes-.i..max);

file.nodes.at-.data..points.is'o (layer,
output.. hreshold,
sigma-.threshold,
user..ptr);

break;

case 2:
center-.weights-.at-.class..averages(training-.data,

Node..re cord,
train-..sot,
nodes..in..layer,
average-.threshold,

starting.node-.in-layer,

layer,
nodes-l-max);

file.center-at-.class-.avgs-.data(layer,
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average-thvreshold,
sigma-.threshold,
user..ptr);

break;

case 3:
k-mneant-.cluster(training..data,

Node-.record,
train-saet,
nodes-in.layer[iJ,
nodes..in..layer,
starting-node-nlayer,
layer);

filec..means..data(layer,
fiodes..in..layer[1J,

user..ptr);

break;

case 4:
nodes-.y = nodes-.in-.layer [1)/nodes-.x;

train-via-kohonent(training..data,
-Node..record,
nodes..in-.layer,
start ing-.node-n-.layer,

train-w.idth,

train-.scale,
width-.no,
nodes-.x,
nodes-..y
layer,
train-.set,
kohonen-.iterations,
record-seed);

file-kohonen-.data(layer,
nodes-x.,
nodes-.y,
user-ptr);

break;

case 5:
NSE-.ptr =fopen(MSE.file,'u");

MSE-remaining-.layers(Node..record,
training-data,

test-.data,
transfer-function,
nodes..in..layer,
starting.node..in-layer,
number..o-layers,
lRyer,
train-.set,
test-.set,
NSE..eta,
total-nodes,
XSE-.successes,
MSE-error-.delta,
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ESEiterations,
XSE..momentum,
classes,
record-.seed,
NSEptr);

fclose(MSE..ptr);

file.NSE..data(layer,
MSEiterations,
MSE.eror..delta,
MSE..momentum,
XSE-.successes,
XSE..eta,
user..ptr);

layer = nlumber-.of.layers;

break;

case 6:
CFM-ptr = fopen(CFI-file,"w");
CFM-remainixng-layers (Iode..record,

training..data,
test-.data,
nodes..kn-.layer,
starting-niode..in-layer,
number..of..layers,
layer,
train-set,
test-.set,
CFI-eta,
total-noides,
CFN.successes,
CFN.iterations,
CFN..alpha,
CFl~beta,
CF-zeta,
CFM-momentiim,
CFl-delta,
classes,
record-.seed,
CFl-ptr);

fclose(CFM-ptr);

file.CFl-data(layer,
CF!Lalpha,
CFJ-beta,
CFJ-eta,
CFM-zeta,
CFN.successes,
CFl-iterations,
CFM-momentm,
CFM-dclta,
user..ptr);

layer =number..of..layers;

break;

case 7:
CE..ptr =fopen(CEfile,"u");

CE..remaininig.layers (Node-.record,
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training-.data,
test-.data,
nodes-.in..layer,
starting-.iwde-in.layer,
number..of..layers,
layer,
train-set,
test-.set,
CE..eta,
tot al-.nodes,
CE..successes,
CE-epsilon,
CE.iterations,
CE~jaomentum,
classes,
record-.seed,
CE..ptr);

fclose (CE..ptr);

file.CE..data(layer,
CE-epsilon,
CE.iterat ions,
CE..momentum,
CE-eta,
CE..successes,
user..ptr);

layer = number-of..layers;

break;

default:
break;

if (node sin-.layer [11 < nodes..1.max)
i

int-buffer =nodes-.ijnmax - nodes-.in.layertlayer);
for (x =0; x < int..buffer; x++)

current-node =start ing.node.in-.layer [layer)
+ node s_-in.l ayer [layer] + X

disconnect.node (Node-..ecord,
current~node,
total-.nodes);

ifNd-eodsatn-oei-ae[]-taseIucin 2
I

:file.sigma..data(layer,
sigma-.rule,
interference-.threshold,
sigma-.factor,
sigma~const ant,
p..neighbors,
user.ptr);

if(sigma-.rule ==1)

scale..sigmas-.by-.class.interference(training.data,
Node-.record,
train-.set,
nodes..in..layer,



starting.node..in-.layer,
total.nodes,
layer,
interference-threshold,
-sigmadfactor);

else if(sigma..rule ==2)

printfQ'\n error in sigma rule selection");
ex5tO;

else if(sigma..rule ==3)

set..sigmas..to-constant lode-record,
nodes..in..layer,
st art ing..node..in..layer,
layer,
sigma-.constant);

else if(sigma-.rule ==4)

set-.sigma-.at-.P.neighbor.avg(Node..record,
nodes.in-.layer,
starting.node.it.layer,
layer,
total-.nodes,
p-.neighbors);

else it (layer ==2)

switch (training..rule (layerJ)

caso 1:
global-(SE.minimization(training.data,

lode-.record,
.rain.set,
nodes.in-.layer,

total-'odes,
layer);

file-.matrix-data(layer,
user..ptx);

break;
case 2:

.- flptr = fopen(MSE..file,'u'):
MSE.remaining-.lars (N'de-..recrd,

trainiig-.data,
test-.data,
trapsfer~fuctjov,
nodes-.in..layer,
.3t.,.tir-,F.Tod-In, layer,
,ualber~of.lAyerfi,
layj1-.
train-set,
test-.sqt,
MSE..ta,
total-_iodea,



MSE..successes,
MSE...rror..delta,
XSE-.iterations,
XSE..momentum,
classes,
record-.seed,
MSE..ptr);

fcloseOISE.ptr);

file.JISE-data(layer,
MSE..iterations,
NSE..error..delta,
XSE..momentum,
XSE-.successes,
MSE..eta,
user..ptr);

layer =wnber-of-layers;

break;

case 3:
CFJ-ptr = open(CMfJ~ile."WI);

CFN-remaining.layers (Iode-.record,
trainng-.data,
test-.data,
nodes-.in..layer,
starting.node.in-.layer,
iiumber..of-layers,
layer,
train-.set,
test-.set,
CFN..eta,
total-nodes,
CFM-successes,
CFN.iterations,
CFN.alpha,
CFl-beta,
CFM..zeta,
CFM..momentum,
CFN..delta,
classes,
record-seed,
CFM..ptr);

fclose(CFM.pti);

file..CFN..data(layer,
CFM-alpba,
CFN..beta,
CFN..eta,
CFM-zeta,
CFl-successes,
CFl-iterations,
CFM-momeitum,
CFM-delta,
user-ptr);

-layer =number-of-layers;

break;

case 4:
CE..ptr-= fopen(CEfile,"u");
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CE..rematining..layers (Node-.record,
trairking..data,
test-.data,
aiodes..in..layer,
start ing_.aode-in-.layer,
number.of..1ayers,
layer,
train-.set,k
test-ge0t,

CE-eta,
total-.nodes,
CE..successes,
CE-epsilon,

CE..momointum,
classes,
record-.seed,
CE..ptr),

fclose(CE.ptr)i

CE-epsilon,
CE.iterations,
CE-momentum,
CE..ta,
CE..successes,
user-ptr);

layer =-number.of.layers;

break;

case 5:
PSJ..last..layer (Node.record,

-nodes-in..layer,
starting-ode.in-.layer,
layer);

fileparzen-indow-data (Node-.record,
nodes..in-.layer,
starting.node..in..layer,
layer,
user..ptr);

break;

default:
break;

else if(layer ==3)

switch (training..rtle[layerJ)

case 1:
MSEptr = I Open (MSEfile,"w");

MSE.remaining.layers (Iode-.record,
training-.data,
test-data,
transfer-function,
nodes-in..layer,
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statingnode-in..layer,
iiwnber-.of.layers,
layer,
train-.set,
teit..set,
XSE...ta,
totul-.nodes,

XSE.successes,
NSE.orror-.delta,
NSE.iterations,
NSE..momentum,
classes,
record-.seed,
NSE..ptr);

tclose(MSE..ptr);

file-ISE-data(layer,
MSE..iterations,
XSEerror..Aelta,
NSE..momentum,
MSE..successes,
XISE.eta,
user..ptr);

layer anumber..oi.layers;
break;

case 2:
CFN..ptr = fopen(CF-file,"u") ;

CFl-remaining..layers (IoOe.record,
traiaiing..data,
t'.,st-data,
nodes-.in-layer,
at azting..uode..in..layer,
nuieber..olayers,
layer,
train-.set,
test-.set,
CFP~eta,
total..nodes,
CFl-successes,
CFW-iterations,
CFl-alpha,
CFl~beta,
CFM-.zeta,
CFMmomentum,
CFl-delta,
classes,
record-seed,
CF)Lptr);

fclose(CFN..ptr);

file-.CFl-data(layer,
CFM-alpha,
CFl-beta,
CFl-et!a,
CFM-zeta,
CFM-successes,
CFM-iterations,
CFM-momentum,
CFM-delta,
user..ptr);
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layer = uuabor..of-layerb;

break;

case 3:
CE..ptr -f open (CE..ilo, "w");

CE..remainSing.layers (Nods-record,
training-.data,
test-.data,
node3-.in..layer,
starting.uodejin-layer,
number.of..layers,
layer,
train-.set,
test..sett
CE..eta,
total-.nodes,
CE..successes,
CE-.epsilon,
CE..iterations,
CE..moseritum,
classes,
record-.seed,
CE-.ptr);

fclose(CE-ptr);

file-.CE.data(layer,
CE..epsilon,
CE..iterations,
CE..momentum,
CE-.eta,
CE..successes,
user-.ptr);

layer = number-.ot~layers;

break;

case 4:
PN.last.layer(Node-t.ecord,

nodes-in-layer,
starting-node-iit..layer,
layer);

flc-p 'rzen,.;Izdov..data (lode,-ecord,

layer,

d~efault:

fprIrWIuser-ptr.,'\i Fir~al topology");

ndesJ-t.Tha or,
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fptr =fopefi(output..file,"w");

:file-.netuork..paraiueters (Node..record,
network-.type,
numbor.olayers,
nodes.in..layer,
training-.rule,
transfer-funct ion,
sigma-.rule,
total-.nodes,
fptr);

for (node 0; node < total-.nodes; node++)
filo-.node..data(Node-.record,

node,
total-nodes,
fptr);

for (U 0; x < classes+1; x++)
training.patterns.in.class~xJ 0;

train-.error =0;
for (x 0; x < train-.set; x++)

class =training-.data~xJ->class;

training.patterns.in-.class~classJ +=I;

test-the-networkc(training-..dta,
Node-.record,

start ing..node..in..layer,
niimbr.of..layors,

total-nodes,
class-.threshold,
misclassified,
&train..error);

file-.last.layer.output (training..data,
Node-,record,

nodes..in..layer,
starting.node-inlayer,
number..of.layers,
fptr);

coxrect.class =train-.set - train-.error;
calculate..percentage((float)correct-.class,

(float)train..set,
&pr..cent..correct);

fprintf(user..ptr,'\ntraining data");
filo..error.data(train..orror,

per..cent-.correct,
misclassified,
user..ptr);

file-.class.count (training..patteriis.in..class,
classes,
user..ptr);
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for (x =0; x < classes+i; x++)
training.patterns.in-.class Er) 0;

test-.error =0;
for Ux = 0; x < test-.set; X++)

class =test.data~xj->class;
training.patterns-.in..class~classI += 1;

test-.the..network(test-.data,
lode-.record,
nodes.in-.layer,
starting-.node..in-layer,
number..of.layers,
X,

total-.nodes,
class-.threshold,

&test.error);

file..last..layer..output (test-.data,
Node-.record,

nodes-.in..layer,
starting.node-in-.layer,
niumber..of-.layers,
fptr);

correct-class =test-set - test-.error;
calculate.percentage( (float)correct-.class,

(float)test-.set 
,

t.3er..cent..correct);

fprintf(user..ptr,"\ntest data");
file..error.data(test-.error,

per..cent..correct,
misclassified,
user..ptr);

file-.class-count (training-pattens..in-class,
classes,
user-ptr);

total-.error = train-.error + test-.error;
correct-.class = train-.set + test-set - total-.error;

calculate..percentage ((float) correct-.class,
(float) (test..setftrain-.set),
&per..cent-.correct);

fprintf(fptr,'\ntotal per cent correct =%f',per..cent-correct);
fprintf(user-ptr,'\n total per cent correct =%f",per-.cont-correct);

fclose (fptr);

for (node = 0; node < total-nodes; node++)
free (*Node..record (node));

fclose (user-.ptr);
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G.2 NETERROR

/* Module Name: NETERROR.C Number: 2.0
/* Description: This module contains the functions which provide */
/* error accounting of the network performance. */
/* *

/* Modules Called: NETOUT */
/* Functions Contained: 2.1 testthenetwork */

2.2 determine.class.as.largest */

2.3 update.errors

/* Date: il Nov 90 Revision: 1.0

*include "netvrble.h"

*include "netfnctn.h"

/* Function Name: testthenetwork Number: 2.1 */
/* Description: This function calculates the errors from a
/* feed forward network due to an input record */

/* Functions Called: 7.1 calculatefeed.forwarenetworkoutput e/
2.2 determine.class.as.largest

2.3 update-errors */
/* */

/* Variables Passed In: training or test-data - Structure array */
1* Node.rocord - Structure array */

nodes.in.layer - Integer array
/* startingnode.in.layer - Integer */
1* number.of.layers - Integer *1
/* total-nodes - Integer */
/* class.threshold - Float
/* misclassified - Integer array

/* *error - Integer pointer */
/* */1

/* Variables Returned: *error - Integer pointer */
/* misclassifier - Integer array
/* Date: 11 Nov 90 Revision: 1.0 */

void test-the.network (struct data *data-record[,

struct Node.data *node-record[],
int nodes.in.layer[],
int starting.node-in.layer[I,
int number.of.layers,

int record,
int total.nodes,
float class-threshold,

int misclassified[],
int *error)

int network-class = 0;
int error-buffer;

error-buffer = *error;

calculatefeedforardnetwork.output(data.record,

node.record,
number.oflayers,

nodes.in.layer,
starting-nodein.layer,

record,
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total.nodes);

determine.class.as.largest(node.record,
nodes.-inlayer,
startingnodein.layer,
&network-class,
number.of-layers,
class.threshold);

updateerrors(data.record,
record,
network-class,
misclassified,
kerror-buffer);

*error = error.buffer;

/* Function Name: determine-class.as.largest Number: 2.2 */
/* Description: This function determines the class as the largest */
/, output node it the output is above some level c/
/c */

/* Functions Called: None */
/* Variables Passed In: Node-record - Structure array */
/c nodesin.layer - Integer array

starting.node.in.layer - Integer array */
*network-class - Integer pointer C/
last.layer - Integer C/
class-threshold --Float C/

/c Variables Returned: *networkclass - Integer pointer
/* Date: 1i Nov 90 Revision: 1.0 */

void determine.class.as.largest(struct Node-data *node.record[0,
int nodes.inlayer[J,
int starting.nodein.layer[I,
int *network-class,
int last.layer,
float class-threshold)

int x, last.layer.node;
float largest = 0;
for (x = 0; x < nodes.in.layer[lastlayer]; x++)

lastlayernode = startingnode.in.layer[last.layer + x;
it ((node.record[last.layernodej->output > largest)

Ak (node.record[last-layer.nodeJ->output > class.threshold)){
largest = node.record[last.layernode]->output;
*network-class = x + 1;}

/* Function Name: update-errors Number: 2.3 */
/* Description: This function compares the actual class of the */
/c data record with the network class. If the two c/
/c are not the same an error is recorded and the Cl

record number of the data record is stored.

/* Functions Called: None */
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/* Variables Passed In: training or test-.data - Structure array e
record - Integer *

1* network-.class - Integer
1* misclassified - Integer array *
1* *class..error - Integer pointer *

1* Variables Returned: *class-.error - Integer pointer *
/s misclassifier - Integer array *

/* Date: 11 Nov 90 Revision: 1.0 *

void update..errors(struct data *data..recordO,
int record,
int network-.class,
mnt misclassified[J,
mnt *class-error)

int x;
x = *class-error;
if Cdata..record[record)->class != network-.class)

misclassified ErJ = data..record~recordJ->nunber;
*class-error = *class-error + 1;

0.3 NETTRAIN

/* Module Name:NEIIRAIN Iumber:3.0 *
/s Description: This module contains the functions necessary to *

establish the network parameters.
/* Nodules Called: NETOUT, NETAUX, NETNATH, NEISHOW
/* Functions Contained: 3.1 global.NSE..minimization *

3.2 make..nodes..at..data-.points
3.3 center...elghts-at-.class.averages

1* 3.4 k..means.cluster
3.5 train-.via.kohonen

is 3.6 NSE.reaaining..layers *
/s 3.7 CE.remaining..layers ~

3.8 CFltremaining..layers 5

3.9 PNI-.last-.layer '
3.10 scale.sigmas..by..class..interference s

/5 ~3.11 set..sigmas..to..constant *
/5 ~3.12 set.sigma-.at..P.neighbor.avg

1* Date:10 Nov 90 Revision: 1.0

*include "netvrble .h"
Ninclude -"netfnctn .h'

FILE *fileptr;
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/* Function Name: global.NSE..minizization Number: 3.1 5

Is Description: This function performs a global miniization of 5

the XSE to find network weights. The equation is 5

/s ~ ~ = (M(transpose)J (inverse) sY(transpose) CS

/* Functions Called: 8.1 determine.Y.matrix 5

/5 8.2 determine.S.matrix *
Is 9.1 make..identity..matrix 5

/s 8.3 determinejM.matrix 5

/5 9.2 determine-mjatriz..transpose
9.3 invert..a-jntrix

/5 8.4 calulate-weight-.matrix 5

/* Variables Passed In: Training Data - Structure
Node Record - Structure 5

/* nodes in layer - integer array 5

/s starting node in layer - integer array s
total nodes - integer
current layer - integer s

/s Variables Returned: Node Record - Structure
/s Date: 10 Nov 90 Revision: 1.0

void global.NSE..minimizat ion (struct data Ctraining-.data[J,
struct Node-data *NoderecordD.,
mnt train-.set,
mnt nodes..in.layerO ,
mnt starting.node..in.layerOl,
mnt total-.nodes,
mnt current-.layer)

int row, nodes;

float MTETRAIN..SET] (TRAIN-SET], N(TRAIN..SETJ ETRAIN..SETJ,
Y[TRIN..SETJ ETRAIN-SET], METRAIN-.SET) ETRAIN.$ETJ,
weight ETRAIN..SET] (CLASSES], S[TRAIN-.SETJ (CLASSES];

float *NTptr[TRAIN-.SET], *Nptr(TRAII..SET],
*YptrETRAIN..SET], CMptrETRAIN..SET],
*ueightptrTRlN.SET], *Sptr[TRAIN..SET];

for (row = 0; row < train-.set; row++)

Nptr~rowv] AN (row] (0];
MTptr~row] = AT~row] (0];
Yptr~rowJ WYrow] (0];
Mptrtrow] = Wrow] (0];
Sptr (row] = S (row] (0];
weightptr (row] Aweight (row] (0];

determine-Y-.matrix (Node-.record,
training-.data,
train-.set,
nodes.in..layer,
starting.node-.in..layer,
total-.nodes,
Yptr,
current-.layer);

nodes nodes..in-.layer Ecurrent..layer-1J;

G-20



determineS.matrix(trainingdata,
train.set,
nodes.in-layer,
Sptr,
current-layer);

nodes = nodes.in.loyer[current-layer);

nodes = nodesin-layer[current.layer-1J;

make.identitymatrix (Nptr,
nodes);

determineM-matrix( Yptr,
Mptr,
nodes.in.layer,
train.set,
current-layer);

determine-matrix.transpose( Tptr,
Mptr,
nodes);

inverta.matrix- (Mptr,
Nptr,
nodes);

calculate.weight..aatrix(Node-record,
weightptr,

Nptr,
Yptr,
Sptr,

nodes.in.layer,
starting-node.in-layer,
train-set,
current-layer);

/**4*** 44* **4*** ** End GlobalMSEMininization **********/

/* ** **4** ***4* * *4*4* * *44*****4*44* * ******/*

/*--Function Name: Makoenodes.at.data.points Number:3.2 /
/* Doscription: This module sets the weights equal to the exemplar */

values. The equation is w(l) = x(l)

/* Functions Called: 7.2 calculate.layerO.output
/* 7.3 calculato.layer.-.output

/* */
/* Variables Passed In: Training Data - Structure 4/

/* Node Data - Structure 4/

Train-set - Integer 4/

Nodes-in.layer - Integer array 4/

/* Sigma.Max - float

/* Output-Max - float
StartingNode.in.layer - Integer array /

/4 Total.Nodes - Integer

Nodes-. - Integer 4/
/* */

/* Variables Returned: Noderecord - Structure */

/* Date:1O Nov 90 Revision:1.0
/**44**s******* ***4*4******4*4** **44**** *G************
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void zsake..nodes..at..data.points(struct data *data..record(],
strucv lode-.data *n-recordfl,
int record-.no,
jut nodes.in-.layer(J,
float sigma-.max,
float output-max,
int starting.node-.in-.layerO,
int total-nodes,
int nodes..)

int record, y, nodel, covered, current-.node, nev..node.nuxsber, xfer-.function;
record = 0;
node s..in.layer CJ = 0;
for (record = 0; record < record-.no; record++)

if(nodes.in-.layer~lJ < nodes.1

covered = 0;
calculate-layer..0.output (data-record,

n..record,
nodes-.in-.layer,
record),

calculate..layer-..output (data-.record,
n..record,3
nodes..in..layer,
starting.node-.in..layer,
total-.nodes);

for (nodel =0; nodel < nodes.in-.layer~l]; nodel++)

current-.node = start ing.node..in-layer [1] + nodel;
if ((n..record (cirrent~node) ->output > output-.max)

(n..record[current.nodeJ ->class ==data-.record (recordJ ->class))
covered = covered +1;

if (covered == 0)

nev..node-.number = starting.node..in..layor~l] + nodes..in..layer El];
for (y = 0; y < nodes-n-layer[OJ; y++)

n..record~nev..node-number]->weight[yJ data..record~recordJ->vector~y3;
n..record Eneu..node..numsberj ->sigma[y) sigma-msax;

n-.record[new-.node.nuiberj ->class = data-.record [record]J->class;
nodes-.in.layer~lJ = nodes-.in-.lay er [1] +1;

/s~s*.*~s~s***End Make Nodes at Data Pointst******/

/* F~unction game: Center-.Weights..at..Class..Averagcs iufbor:3.3 '
/* Description: This-function sets the node weights equal to the *

averages of clusters-of the same class
/* ,(+WW = V(- + [z-v(-)]/(Il) *

/* Functions Called:-9.4 update-average *
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/* Variables Passed In: Training data - Structure */
/c Node-record - Structure */

record.no - integer
/c nodes.in.layer - integer array */

average.threshold - float */
/* sigma-threshold - float

startin.node.in.layer - integer array */
/* total.nodes - integer */
/* current.layer - integer */
/* nodes-1-meximum - integer */

/* */
/* Variables Returned: Node.record - structure */
/* */
/* Date:i0 Nov 90 Revision: 1.0 */

void center.weights.at.class.averages(struct data *data.record0,
struct Node.data *node.record[],
int record-no,
int nodes-in.layor[],
float threshold,
float sigma-max,
int starting-node-in-laye.-C ,

int tetal.nodes,
int curzrei.layer,

int nodes-max)

int nearest.node 0;
int iteration;
double min.distance = 1000;
double distance, buffer;
double exponent.I = 2;
double exponent.2 = .5;
int new-node = 0;
float nevaverage;
int record, y, x, covered, elements[TRAINSET+TEST.SET], current.node, previous.layer.node, nev.node.number;
nodesin.layer[current-layer = 0;
record = 0;

for (x=O; x < TRAIN.SET + TEST-SET; x++)
elementslx]=O;

do{
new-node = 0;
for (record = 0; record < record-no; record++)-{

if (nodes.in.layer[current.layer < nodes-max){
min-distance = 1000;
covered = 0;
calculate.layerOoutput(datarecord,

node-record,
nodes.in.layer,
record);

for (x = 0; x < nodes_in-layer[current.layerJ; x++)
{
current-node = startin.node- in.layerEcurrent_!ryer] + X;
if (node.record[curront-node->class ==-data.record(record]->class)
{

buffer = 0;
for (y = 0; y < nodes.in-layer[curront-layer-1J; y++)
{
previous.layer.node = starting-nodein.layer[current-layer-13+y;
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distance = node..record~current..odeJ ->weight[previous..layer.nodeJ
-node..record [previous-.layer.nodeJ ->output;

distance = pov(distance, exponent-.1);
buffer =buffer + distance;

I
distance = pow(buffer,exponent-2);
if (distance < min-.distance)

nearest-.node =current-.node;
min-.distance =distance;

if (min-.distance < threshold)

x = nearesnode-startingnodejn.layer~current..layerJ;
elementslxiJ = lements~xJ+1;
for ( y =0; y < nodes..in..layer[current-.layer-1J; y++)

previous.layer-node = starting.node..in.layer~current-.layer-1] +y;
update..average(node-.record~nearest-node2->weight (provious..layer.:ItodeJ.

elezsents~xJ,
node..record (previous-.layer.node) ->output,
knew-.average);

node-.rcord~nearest..nodeJ->weight Eprevious.layer.node) = new-.average;

x nodes-.in.layer~current..layerJ;
covered =covered +1-,

else

new-.node-.nuzsber =starting.node-.in-.layer~current..layerI + X
for 'y =0; y < nodes-.in.layerrcurrent-.layer-1); y++)

previous-.layer-node = starting.node.in-.layer~current..layer-1J + y
node-.recordnev_-node.nursberJ ->weight Eprevious..layer.nodeJ node..record Eprevious..layer-node) ->output;
node-record[ne..node.nusbarJ->sigma~previous.layor.node3 sigma-.max;

node..record[new-.node-nusberJ ->class = data..record ErecordJ ->class;
elements~x]j 1;
nodes..in-.layer[current..layerJ = nodes..in-.layer Ecurrent..layerJ +1;

/* printf("\ncreated node %d",nev..node-.number); *
new--node = 1;

while (new-.node ==1);

/***************End Center Heights at Class Centers s***

/* Function Name:X-Means Cluster Number:3.4 a
/* Description. This function implements the X-Neans Clustering *

algorithm to-set the weights. C
/a w(+) = (1/N)sum (r(n))

/* Functions Called: 7.2 calculate.layer-O-.output *
8.28 find.nearest..neighbor 4
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9.4 update-.average

/* Variables Passed In: Training Data - Structure
lode-.record - Structure

1* Train-.set - Structure *
/s ~Nodes...i.Maximum Integer 5
/5 Nodes..in..Layer - Integer array 5
/5 ~Starting.Node..in..layer - Integer array 5

Curre~t-.Layer - Integer

/* Variables Returned: Node-rzecord - Structure
/* Date: 10 Nov 90 Revjsion:1.0

void k..means.cluster(struct data *data-recordO,
struct Node-data *node-record[J,
int record-.no,
int nuxber-.of.clusters,
int nodes..in..layer [J,
mnt starting.node.in-.layerOl,
int current-layer)

int record, x, y. z. current-.node, nearest-node, previonslayer-.node, update;
mnt total-.elements, current-.record, elements;
float new-average, current.avgTEST.SETJ;
int element [TEST-.SETJ [TEST-.SETJ, elements-n.clusterTEST.SET];
double distance, nearest-.distance, buffer, difference;
new-.average = 0;
for (record = 0; record < number.of..clusters; record++)

calculate.layer..0.output(data..record,
node-.record,
nodes..in..layer,
record);

current-.node = starting.node..in..layer[current.layerI + record;
for (y = 0; y < nodes-in.layer~current..layer-i) ;y++)

previous..layer.node = starting-node.in-.layer~current-.layer-1J+y;
node..record~current.nodeJ->weight Eprevious-.layer..node] node..record (previous..layer.nodej ->output;

do

for Ux = 0; x < nuinber..of..clusters; x++)-
elements..in..cluster[x) = 0;

update = 0;
for (record = 0; record < record-.no; record++)

find..nearest-.neighbor(data-.record,
node-.record,
record,
nodes.in..layer,

current-.layer,
&nearost..node);

nearest-.node nearest-node -- starting-node.in..layercurrent.layer];
current-.rccord ccrcct tca ztndJ
element [nearest.nodeJ Ecurrent..record] record;
elements-.in..cluster Enoarest-.nodeJ elements-.in-.cluster[noarest.nodeJ+1;

for Ux 0; x < nodes..in..2ayer~current-.layerJ; x++)
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current-.node start irgnode.in-layer [current-.lay er) + x;
for (y = 0; y < nodes..in..layer[current.layer-1J; y++)

current-.avg[yJ 0;
total-.elements =elements..ln.cluster[xJ;
for (z = 0; z < total-elements; z++)

record = element[x)Ez);
elements = z + 1;
calculate.layer.0..output (data..record,

node-.record,
nodes.in..layer,
record);

for (y = 0; y < node s- in-.layer [current-.layer-1J3 y++)

previous.layer.node =starting.node..in.layer[current..layer-1) + y
update-.average(current..avg[yJ,

elements,
node..record~previous-layer.nodeJ ->output,
knew..average);

current..aygyJ] - nev-.average;

for (y = 0; y ( nodes-in..layer~current..layer-1J; y++)

previous..layer.node = starting.node-in..layor~current..layer-i) + y
difference = node..record[current..nodeJ ->weight Eprevious-.layer-.nodeJ-current..avg~y);
if (fabs(difference) > .00001)
update = 1;

node-.record~current.nodeJ->weight~previous.layer-node current..avg[y];

uhile(update !0);

/**********e**End K-Means Cluster *ees,*.,e/

/* Function Name: Kohonen Training Nuzeber:3.5
/* Description: This function updates the weights via the kohonen *

/* training algorithm
/ew(+) = (-) + a~x-w(-)) *

/* Functions Called: 4.9 get..randomn.record *
7.2 calculate.layer-..0output *

1* 8.13 calc..dist.ontput-.to..nxt..lyr
8.14 find.nearest.element

/* 8.11 get-.linear..training..eta
/c 8.12 get..kohonen..neighborhood *
/a 8.15 find-.kohonen.boundaries 4

/4 8.16 determine-.neighborhood.elements *
1* 8.17 train-kohonen-..eights

1* Variables Passed In: Training-.Data - Structure
Node-.Record - Structure

/4 ~Nodes-.in-.layer - integer array
Starting.Node.in..layer - integer array e

/* Neighborhoods - integer array 4
Train Width - integer array 4

Train Scale -float array
Width-.number - integer

/4 Nodes..x - integer
/4 Nodes..y - integer
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/* Current-.layer - integer
Train-.set - integer

/* Variables Returned: Node-.record - Structure
/* Date: 10 Noy 90 Revision: 1.0 5

void train.via-kohonen(struct data *data..recurd(J,
struct Node-.data *node..recordOl,
jut nodes-.in.layerfl,
jut starting-node..in..layer[J,
int neighborhoods 0,
jut train..uidth[J,
float train..scale(J,
jut width-.no,
int nodes-x,
int nodes..y,
jut current-.layer,
int train-.set,

int kohonen..iterations,
unsigned seed)

iut x, y, current-.node, iterations, record;
mnt winner-.node;
int neighbors, left, right, up, down, nodes..to..update;
jut update..node(1O];
float eta;
float distance [100);

record = 0;
iterations =0;
srand(seed);
do

get~randoms.record(train.set,
kre cord);

calculate.layer..0.output (data..record,
node-.record,
nodes-.in-.layer,
record);

calc..dist.outputs.to-nxt-.lyr(node..record,
nodes..in..layer,
start ing..node..in..layer,
current-.layer,

dist anc'q);I
find.nearest-o.lement (distance,

nodes-,in..laycr l],
kwianer..node);

winner-.node = starting-node..in..layer~current..layerI
+ winner..uodo;

gct-.linear-training..eta(train.width,
train-.scale,
iterations,

width-no);

get..kohonen-.neighborhood(trainwidth,
iterations,
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neighborhoods,
width-no,
&neighbors);

find.kohonen.boundaries(winner.node,
starting.node.in.layer,
current-layer,
nodes.x,
nodes.y,
neighbors,
&left,
&right,
&up,
&down);

determineneighborhoodelements(left,
right,
up,

down,
&nodes.to.update,
update.node,
startingnodein.layer,
nodes.x,
current.layer);

trainkohonen.weights(node.record,
nodes.in.layer,
startingnode.in.layer,
current.layer,
nodesto.update,
update.node,
eta);

iterations = iterations + 1;
}
while (iterations < kohonen.iterations);

}
/********** End train via kohonen ***************s/

/* Function Name: MSE Remaining Layers lumber:3.6 */
/* Description: The function performs backpropagation to optimize e/
/* the MSE objective function.

/* Functions Called: 4.8 getrandom.class.record 5/

7.1 calculatefeedforward.networkoutput */
/* 8.10 calculateerrors.in.output 5/

/* 8.5 MSE.last.layer */
8.8 MSE.mid.layer */

/* 8.9 MSE.ist.layer */
/* 5.9 correctnodeweights
/s 2.1 test-the-network
/* 9.6 calculate-percentage */

/* Variables Passed In: Node-Record - Structure

Training-Data - Structure 5/

Test.Data - Structure '/
/* TransferFunction - Integer array */

Nodes-in.Layer - Integer array */
StartingNode-in.Layer - Integer array *1
Number.ofLayers - Integer
Current.Layer - Integer

Train-Set - Integer
/* Test.Set - Integer */
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/* MSEEta - Float
Total.Nodes - Integer */
MSE.Successes - Integer */
MSEEpsilon - float */

/* MSE.Iterations - Integer */
/* MSE.momentum - float */
/* Classes - integer */
/* Record.Seed - unsigned */
/* File.Ptr - File pointer */

/* Variables Returned: Node.Record - Structure
/* Date: 10 Nov 90 Revision: 1.0 */

void MSE.remainig.layers(struct Node.data *node-record[],
struct data *data.record[],

struct data *test.recordO,
int transfer.function[],
int nodes.in.layer[I,
int starting.node.inlayer[],
int number.of.layers,
int current.layer,
int train.set,

int test-set,
float eta,

int total-nodes,
int MSE.successes,

float epsilon,
int backprop.iterations,

float alpha,
int classes,
unsigned-seed,
FILE *file.ptr)

float desired.output[CLASSES];
int x, y, error, record, layer, node;
int success = 0;
int iteration = 0;
int error.intervalcount = 0;
int error-cornt = 0;
int misclassified[TRIN.SET];
int correct.class = 0;
float class.threshold = 0;
float per.cent.correct = 0.0;
float old..ght[TOTAL.IODES][TOTAL.NODES];
float *vght.ptr[TOTAL.NODES];

class-threshold = I-epsilon;

for (x = 0; x < totalnodes; x++)
{

for (y = 0; y < total-nodes; y++)
oldvght[x][y] = 0;

wght.ptr[x] = kold_.ght [x [0] ;

srand(seed);
do
{

error = 0;
get.randomclass.record(data.record,

train-set,
classes,
&record);
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for Ur = 0; x < nodes-..in...layer [number.olayersJ; x++)

if U(= data..record[record)->class -1)
desired..output Er) = 1.00;

also
desired.output~xr) 0.00;

calculate-.feed..forward.network.output (data-.record,
node-.record,
number..of..layers,
nodes-.in..layer,
start ing..nodein.layer,
record,
tot al-.nodes);

calculate.errors.in..output (node..record,
dosired.output,
nodes.in-.layer,
starting.node.in.layer,
nuaber-of..layers,
&error,

epsilon);

if (error != 0)

success = 0;
for (layer = number..of..layers; layer > current-.layer -1; layer--)

if (layer ==number-.of.layers)
NSE-.last-.layer(node..record,

desired-.output,
nodes-.in..layer,
starting.node.in..layer,
layer,
eta,

epsilon,
wght..ptr,
alpha);

else if (layer ==numberof..layers-1)
MSE-.mic-layer (node..record,

desired-output,

nodes-in.layer,
start ing..node-.in.layer,
layer,
eta,
wght-ptr,
alpha);

else if (layer == number-.of..layers-2)
NSE-.ist..layer (node..record,

desired-.output,
nodes.in..layer,
starting-node-.in..layer,
layer,
eta,
vghlt.ptr,
alpha);

else
success success + 1;

iteration iteration +1;
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correct..node..eights(node-record,
total-.nodes);

error..interval.count = error-.interval-count + 1;

if (error..interval.count ==1000)

error-.count = 0;
for (x = 0; x < train-.set; x++)

test.the.netuork(data..record,
node-.record,
nodes.in.layer,
starting.node.in-layer,
number-.of..layers,

total-.nodes,
class..threshold,
misclassified,
kerror..count);

correct-.class =train-.set - error-.count;
calculate.percentage( (float)correct..class,

(float)train.set,
kper-.cent..correct);

fprintf(file..ptr,"\niteration = %d training correct %"
iteration, per..cent..correct);

error-.coun~t = 0;
for Ux = 0; x < test-.set; x++)

test.the..network(test..record,
node-.record,
nodes-.in..layer,
starting-node-.in..layer,
number.of..layers,
X,

total-.nodes,
class-.threshold,
misclassified,
kerror.count);

correct-.class =test-.set -error..count;
calculate-.percentage ((float) correct..class,

(float)test.set,
kper..cent-.correct);

fprintf(file..ptr," test percent = %f',per-.cent-.correct);
error-.interval-.count =0;

while((iteration < backprop-.iterations) kk (success < NSE..successes)),

/******************End XSE Remaining Layers*****/

/* Function Slame: CE-.Remaining..Layers INuber:3.7

1* Description: The function sets parameters by backpropagation *

1*according to the CS objective function

/* Fuanctions Called: 4.8 get -randon-.class.-record- *
1* 7.1 calculate..feedforward-.network-output e

/c 8.10 calculate.errors.in.output
8.20 CE..last..layer *

/* 8.21 CS-mid.layer *
1* 8.22 CE.first-.layer

5.9 correct.node..seights C
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/, 2.1 test.the.Network */

I. 9.6 calculate-percentage */

/* Variables Passed In: lode.Record - Structure */

1, Training.Data - Structure */

Test.Data - Structure a,
'odesin.Layer - Integer array a,

/s Number.of.Layers - Integer
/* Starting.Node-in.Layer - Integer
/* Current.Layer - Integer */

/* Train.Set - Integer */
/, Test-Set - Integer Cl
/, CE-eta - Float */

/, Total.odes - Integer */
/a CESuccesses - Integer */
/, CE.Epsilon - Float */

.CE.Iterations - Integer */

/, CEMomentum - Float */

/a Classes - Integer */

/* Record.Seed - Unsigned C/

/, File.Ptr - File pointer

/* Variables Returned: Node.Record - Structure */
/* Date:10 Nov 90 Revision: 1.0

void CE.remaining.layers(struct Node.data *node.recordO,

struct data *data.record[l,
struct data *test.record[l,

int nodes.in.layer[l,
int starting.node-in.layer[],

int number-of.layers,

int currentlayer,

int train.set,

int test-set,
float eta,

imt total.nodes,

int CE.successes,
float epsilon,

int CE.iterations,
float momentum,

int classes,

unsigned seed,

FILE *file.ptr)

float desired.output[CLASSES];

int x, y, error, record, layer, node;

int success = 0;

int iteration = 0;

int errorinterval.count = 0;

int error-count = 0;
int misclassiied[TRAINSET];
int correct-class = 0;

float per-cent-correct = 0.0;

float old..ght[TOTALNODES][TOTAL_.ODES];
float *wght.ptr[TOTALNODES] ;

float class-threshold = 1-epsilon;
float new-eta = eta/(nodesin.-layer[number.of.layers]*2.3);

for (x = 0; x < total-nodes; x++)

for (y = 0; y < total-nodes; y++)

old.wght[x [y] = 0;
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ught-.ptr Ex) k old..ught Ex) 0J;

srand(seed);

do

error = 0;
get..random..class..record(data.record,

train-.set,
classes,
&re cord);

for Ux = 0; x < nodes-.in-.layer [numb er-.of -layers); x++)

if (z == data..record~recordj->class-1)
desired..output~xJ = 1.00;

else
desired..output~xJ = 0.00;

calculate.feed..forward..netuork..output (data..record,
node-.record,
number-.of.layers,
nodes.in..layer,
startingnode-.in-.layer,
record,
total-nodes);

calculate-.errors.in-output (node..record,
desired-.output,
nodes-.in..layer,
starting..node-in-layer,
number..of..layers,
&error,
epsilon);

if (error != 0)

success = 0;
for (layer = number.of..layers; layer > current-.layer -1; layer--)

if (layer ==number-.of..layers)
CE..last.layer(node.record,

nodes.in..layer,
start ing-node..in..layer,
layer,
wght..ptr,
new-.eta,
momentum,
desired-.output);

else if (layer number-of..layers -1)
CE..mid..layer(node.record,

nodes..in..layer,
starting.node.in..layer,
layer,
wght..ptr,
now-.eta,

desired-.output);

else if (layer ==number-.of.layers-2)
CE..first..layer(node..record,

nodes.in..layer,
starting.node.in.layer,
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layer,
vght-ptr,
new-.eta,
momentum,
desired-.output,
total-.nodes);

else
success success + 1;

iteration iteration + 1;
correct.node..veights(node.record,

total-nodes);

error-.interval.count = error-.interval.count + 1;
if (error..interval..count ==1000)

error-.count =0;
for U = 0; x < train-set; x++)

test..the..etwork(data..record,
node-.record,
nodes..in..layer,
start ing..node-in.layer,
nuzaber..of.layers,
X,

total-.nodes,
class-.threshold,
misclassified,
kerror-count);

correct-.class = train-.set - error-.count;
calculate..percentage((float)correct.class,

(float)train-.set,
-kper..cent..correct);

fprintf(file..ptr," ',niteration = %d training correct =%f",
iteration, per-cent-.correct);

error-count =0;
for (x = 0; x < test-.set; x++)

test.the..network(test-record,
node-.record,
nodes..in-.layer,
start ing..nodejin..layer,
number-of-.layers,
X,

total-.nodes,
class-.threshold,
misclassified,
kerror..count);

correct-.class = test-set - error.count;
calculate-.percentage( (float)correct-.class,

(float)test.set,
&per..cent-correct);

fprintf(file.ptr," test correct = %f",per..cent..correct);

error.interval.couit- 0;

whileC(iteration < CE-.iterations) kk (success < CE-successes));

/* End CE Remaining Layers *
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/* Function Name: CFMRemaining.Layers Number:3.8 */
/* Description: The function sets parameters by backpropagation */

according to the CE objective .unction */
/* Functions Called: 4.8 get.random.class-record */
/* 7.1 calculate_feedforward.network.output */

2.2 determineclassas.largest */
/* 8.28 find.second.highest.node */
/* 8.23 calculate.zn */
/* 8.20 CFM-last.layer */

8.21 CFM.mid-layer
/* 8.22 CFM.first.layer */

5.9 correct.node.eights */
/* 2.1 test-the.network */

9.8 calculate.percentage */

/* Variables Passed In: Node-Record - Structure */
/* Training-Data - Structure */
/* Test.Data - Structure */
/s Nodes.in.Layer - Integer array */
/* Starting.Node-in-layer - Integer array */

Number-of.Layers - Integer */
Current.Layer - Integer
Train.Set - Integer */
Test-Set - Integer

/5 CE-eta - Float 5/

Total-lodes - Integer */
/* CFMSuccesses - Integer

CFMIterations - Integer
/5 CFM.alpha - Float 5/

/* CFM.beta - Float 5/

/5 CFm-zeta - Float

CEMomentum - Float
/* CE.delat - Float

Classes - Integer 5/

Record.Seed - Unsigned 5/

/s File.Ptr - File pointer

/* Variables Returned: Node-Record - Structure */
/* Date:10 Nov 90 Revision: 1.0 */
****************55******5**5555555*55*55***5*5*5*******************

/sssssssssssssssssssssssssssssssssssssssssssssssss**ss*ss*/

/* CFM Remaining Lyrs/***5**5**5*******************5**5***********5/**

void CFN.remaining.layers(struct Node_data *node.record[N,

struct data *data.record[N,
struct data *test.recordD,

int nodes.in.layer[l,
int startingnode-in-layer[N,

int number.of.layers,
int current-layer,

int train.sot,
int test.set,

float eta,
int total-nodes,
int CFM-successes,

int CFX.iterations,
float alpha,

G-35



fla beta
float beta,

float momentum,
float delta,
jut classes,
unsigned seed,
FILE- f ile..ptr)

jut x, y, record, layer, correct-nuode, winner-.node;
jut netvork-.class = 0;
jut success = 0;
jut iteration = 0;
int error.iuterral.count = 0;
jut error-.count =0;
jut misclassified[TRIIN_.SETJ;
jut correct-.class = 0;
float per-cent-.correct =0;

int next-.highest-n.ode;
float class-threshold =0;
float new-.eta =0;
float znECLISSES];
float old..ught ETOTAL..NO DES] ETOTAL..IODESJ;
float *wght-.ptr[TOTAL-3ODES];
float epsilon =.9;

for (x =-0; x < total-nuodes; x++)

for (y = 0; y < total-n.odes; y++)
old..vght~xj~y) = 0;

vght.ptr Er] &old.wght Er)[0J;

new-.eta = eka *beta * apha/(nodes.mnlayer~number.of..layers)-i);
srsnd(seed);

do

iteration = iteration + 1;

get..random..class..record(data-.record,
train-.set,
classes,
&re cord);

calculate.feed-.forward.uotvork.output (data..record,
node-record,
uumber-.of.layers,
nodes-.in..layer,
start ing..node-n-.layer,
record,
total-.nodes);

correct-.node = startig-n.ode.in-.layor~nunber.of-.layersJ
+ data-.record[record)->class - 1;

determine.class-.as..largest (node..record,
nodes-.in.layer,
starting.uode.in-layer,
fetworkclass,
uumber.of..layers,
class-.threshold);

winner-.node =starting.node.in.layer~number-.of-layorsJ
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+ network.class • 1;

if (winner.node - correct.node)
find.second.highest.node (node.record,

nodes..inlayer,
starting.node.in.layer,
number-.oflayers,
winner.node,
&next.highestnode);

it ((winner-node != correct.node)
II (node.record[correct.node)->output

- node.record[next.highest.node]->output < delta))

success = 0;
calculate.zn (node.record,

nodes.in.layer,
startin.node.in.layer,
number..oflayers,
correct.node,
zn,
beta,
zeta);

for (layer = number.of.layers; layer > current.layer-i; layer--)
{
if (layer == numberof.layers)

CFM-last-layer(node.record,
nodes.in.layer,
starting.node-.inlayer,
layer,
zn,
correct-node,
new-eta,
2ght-.ptr,
momentum);

else if (layer == number-of-layers-1)
CFM.mi'.layer(node.record,

nodes.in.layer,
starting.node.in-layer,
layer,
zn,
correct.node,

new.eta,
wght-ptr,
momentum);

else if (layer == number.of.layers-2)
CFM-first.layer(node.record,

nodes.in.layer,
starting.nodein-layer,
layer,
zn,
correct.node,

new.eta,
wght.ptr,
momentum,
total-nodes);

else
success = success + 1;
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error-intervalcount = errorinterval.count + 1;
if (error.interval-count == 1000)
{

error.count = 0;
for (x = 0; x < train.set; x++)

test-the.network(data.record,
node.record,
nodes.in-layer,
starting.node-in.layer,
number.of.layers,
x,

totalnodes,
epsilon,
misclassified,
&errorcount);

correct-class = tvain-set - error.count;
calculate.percentage((float)correct-class,

(float)trainset,
&per.cent.correct);

fprintf(file.ptr,"\niterations = %d training correct =f",
iteration, per.cent.correct);

error-count = 0;
for-(x = 0; x < test-set; x++)

test.the.network(test.record,
node-record,
nodes-in.layer,
starting.node_.n-layer,
number.of.layers,
X,

total.nodes,
epsilon,
misclassified,
&error.count);

correct-class = test.set - error.count;
calculatepercentage((float)correct.class,

(float)test-set,
&per.centcorrect);

fprintf(fileptr," test correct = %f",per-cent-correct);
error-interval-count = 0;

}
}
while(success < CFM.successes fk iteration < CFM.iterations);

/* End CFM Remaining Lyrs

/*********************************************************a/

/* Function Name:PNNlast.layer Number:3.9
/* Description: This function sets the network weights in the */

output layer equal to 1 and connects the output */
layer nodes only to the nodes of the same class */
in the hidden layer

/* Functions Called: None 4/
/* Variables Passed In: Node.Record - Structure
/4 Nodesin.-Layer - Integer array

StartingNode.inLayer - Integer array */
/* Current-Layer - Integer
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/* Variables Returned: lode-.Record - Structure 4

/* Date:1O Noy 90 Revision:1.0 41

void PN.last..layer(struct Node..data *node-.record[.
iut nodes..in-layer(J,
int starting-.nods-.in.layerl,
mnt current-.layer)

int X, Y, current-.node, previous.lyr.node;
float nodes.of..class;

for (x =0; x < node s.in..layer [current..lay er] ; x++)

current-.node =start ing-.node-in-.layer tcurrent..layerJ +x;
node..zecord[current..nodeJ->class = x + 1;
nodes-of-.class =0;
f or (y = 0; y < nodes_.in..layer Ccurent..lay er-1J ; y++)

previous..lyr.uods = starting.node..in-.layer[current.layer-l)+y;
if (node..record~current..nodeJ->class =

node..record[previous.lyr.nodeJ ->class)

nodes..of-.class += 1;
node..record[current.nodeJ->connect Eprevious..lyr-.nodeI = 1;

else

node..record~current-nodeJ ->connect (previous.lyr.nodeJ 0;
node..record~current-node) ->ueight Eprevious-.lyr-.nodeJ 0;

for (y = 0; y < node s-.in..layer [current -layer- 1J; y++)

previous..lyr.node = atarting..node..in..layer~current..layer-1J + y
node..record Ecurrent..node) ->ueight [previous..lyr.nodeI = 1;

/* End Connect Nodes to Class Nodes

/* Function Name: Scale-Sigmas-.by.Class-Interference Number:3.10 *
/* Description: This function scales the size of the RBF sigmas by *

by a constant if a data point causes more than 1I *
RBF node to be excited past some threshold and the 4

RBF nodes are not detecting the same classes. *

/* Functions Called: 7.2 calculate.layer.O.output 4

/4 7.3 calculate.layer-.l.output

/* Variables Passed In: Training-.Data - Structure
Node-Record - Structure
Train-.Set - Integer 4
Nodes-.in-.Layer - Integer array
Starting.Node-in-Layer - Integer array ~
Total-.Nodes - Integer *
Current-.Layer - Integer
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/* Cutput-.Threshold - Float *
Ic Scale-.Factor - Float *

/* Variables Returned: lode-.Record - Structure *
/* Date: 10 Nov 90 Revision: 1.0 *

void scale-.sigmas..by-.class.interference (struct data %data..recordr.J,
struct lode-.data 43-record(],

jut record-nuo,
jut nodes..iu..layerEJ,
int starting.node..in..layerEJ,
iut total-.nodes,
int current-.layer,

float out-.max,
float scale-.factor)

jut record.ptr[TGTL..ODES];
jut X, Y, node, record, z, current-.node;
for (record =0; record < record-.no; record++)

calculate-layor0..output (data.re cord,
I-record,
nodes..in..layer,
record);

calculate..layer.l-output (data-.record,
I-record,
nodes..in..layer,
starting.node..n.layer,
total-.nodes);

x = 0;
for (node =0; node < nodes-in-.layer~current-layerJ; node++)

current-.node -_starting.node..iu.layer[current-layerJ + node;
if ((N..record[current-.nodej->output > out-.max) it

(N-.record[current-.node]->class data..record~recordJ->class))

record..ptr~x) = current-node;
x = X+1;

if Ux > 0)

for (y = 0; y < x; y++)

current.:,ode = record..ptr~yj;
do

for (z=0; z < total-nodes; z++)
N-.record Ecurrent-.node) ->sigma EzJ1 .recordtcurrent.nodej ->sigma [z]

-scale-.f actor * (I..record~current.uodeJ->sigma~zJ);
calculate.uode..output(data-.record,

-N~record,
current-.node,
total-.nodes);

uhilc(!...rocord~current.node)->output > out..max);

/****************End Optimize Sigmas ***ee**/
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/* Function Name: SetSigma.to.Constant lumber: 3.11 */
/* Description: This function sets the RBF sigmas to a constant 4/

/* Functions Called: None */
/. Variables Passed In: Node.Record - Structure */
/. Nodes.in.Layer - Integer array
/4 Starting.Node-in.Layer - Integer array */

/4 Current.Layer - Integer

/* Sigma.Constant - Float */
/* */
/* Variables Returned: Node.Record - Structure 4/

/* Date: 10 Nov 90 Revision:1.0 */
/**4444*444*444444*44444444444444*444******4444444444***/

void set.sigmas.to-constant(struct Node.data *node.record[N,
int nodesin.layer[],
int starting.node-in.layerD,
int current.layer,
float sigma.constant)

int x, y, current.node, previous.layer.node;
for (x= 0; x < nodes.in.layer[current.layar]; x++)
{

current.node = starting.node.in.layer[current.layer]+x;
for (y = 0; y < nodes-in.layer[current.layer-1]; y++)
{

previous.layer.node = starting.node-in.layer[current.layer-1]+y;
nodeorecord[current.node]->sigma[previous.layer-node = sigma_constant;

I
}

I

/******************End Set Sigmas to a Constant************/

/***444444*4444*****444444*44*4444444*4444444444444444*4**

/* Function Name:Set.Sigmas.at.P.leighbors.Avg Number:3.12 */
/* Description: This function set, the sigmas of the RBFs equal to */

the root mean square distances of the closest P 4/

Neighbors */

sigma = sqrt[(I/P)sum(dp)] 4/

/, Functions Called: 8.18 find.distance-between.nodes */
/4 8.19 sort.2.dim.array
/* .

/, Variables Passed In: Node-Record - Structure */
/, Nodes.in.Layer - Integer array

Starting_Node-in.Layer - Integer array */
/, Currer.tLayer - Integer */
/4 Total-Nodes - Integer */
/, P_Neighbors - Integer

/* Variables Returned: Node.Record - Structure
/* Date: 10 Nov 90 Revision: 1.0 4/

void set.sigma.at.P-neiehbor.avg(struct Node.data *node.record[0,
int nodes.inlayerD,
int starting.node_inlayer0,
int current-layer,
int total-nodes,

p-..ncighbora)
{

int x, Y, z, current.node, next-node, previouslayer.node;
float distance.between[TRAIN.SET][TRAIN.SET];
float *distance.ptr[TRAINSET];
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double avg3 distance, buffer;
double exponentjI = 2;
double exponent.2 = .5;
for (x = 0; x < nodes..in..layer[current..layerj; x++)

distance.ptr~xJ = &distance-.betveen[xJ [oJ;
for (x= 0; x < nodes-in-.layer~current..layer); x+*)

current.node = start ng-.node..in..layer [current.-layerJ + x
for (y = 0; y < nodes..in-.layer[current..layerj; y++)

next-.node = starting.node...Thjayer~current..layerJ + y
find..distance..betueen..nodes (node..record,

nodes..in..layer,
starting.node..in-.layer,
current-.node,
next-.node,
current-.layer,
distance.ptr);

sort.2dim-.array (distance..ptr,
nodes-.in-.layer~current..layerJ,

distance-= 0;
for (y = 0; y < p..neighbors +1; y4*)

buffer = distance..betueen~x] EyJ;
distance = distance + pow(buffer,eponent-i);

avg = distance/p.neighbors;
for (z = 0; z < total-.nodes; z++)

nkode..record~current.nodeJ ->sigma~zJ pow (avg3 exponent-.2);

1* End Set Sigma at P neighbor average *

G.4 NETINPUT

/* Module Name: NETINPUT.C Number:4.0 *
/* Description: This module provides the functions necessary to e

1* randomly load the input data and to preset the *
1* network parameters *

/* Modules Called:-NETINIT.C *
/* Functions Contained: 4.1 load-.input..patterns 4

/4 4.2 load..sepaate-files *
4.3 load..from..single..file

Ic 4.4 load..by..classes 4

4.5 get-.data
4.6 normalize-data 4

/4 4.7 randomize-.records c
4.8 get..random..class..record c

/4 4.9 get..random..record
4.10 calulate.euclidean.distance.between c

-.inputs *
4.11 get-v.eights
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/* 4.12 get-sigmas */
4.13 get-outputs

/* *

/* Date: 11 Nov 90 Revision: 1.0 C/

#include "netvrble.h"
#include "netfnctn.h"
*include <time.h>
*include <stdlib.h>

/*eeeseeess*e***e*e*eeeeeeeeeeeesseeeeeese*eee*e*e************s

/* Function Name: load.input.ptterns Number: 4.1
/* Description: This function determines wether the data should */
/* be loaded randomly from separate files, from a */
/* single file for by class
/* *

/* Functions Called: 4.2 load.separate.files */
/* 4.3 load-from.single-file */
/* 4.4 load.by.classes */
/* *

/* Variables Passed In: training-data - Structure array
/* test.data - Structure array */

train.set - Integer *1
It test.set - Integer
/* dimension - Integer

classes - Integer

training.patterns-in.class - Integer array */
randomization.rule - Integer

/* data-seed - Unsigned t/
/t *train-ptr - FILE pointer /
ft *test.ptr - FILE pointer
/*t*

/e Variables Returned: *train.ptr - FILE pointer */
*test.ptr - FILE pointer */

/* Date: 11 Nov 90 Revision: 1.0 */

void loadinput.patterns(struct data *training.data[],
struct data *test.data[],
int train-set,
int test-set,
int dimension,
int classes,
int trainingpatterns.in.class[,
int randomization.rule,
unsigned data-seed,
FILE *train.ptr,

FILE *test.ptr)

{
int random.record[TRAINSET+TESTSET];

if (randomization.rule == 1)
{

load-separate.files (training-data,
test.data,
traincct,
test.set,
dimension,
random.record,
data-seed,
train-ptr,
test.ptr);
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}
else if (randomization.rule == 2)
{

loadfrom-singlejile (training.data,
test.data,
train.set,
test-set,
dimension,
random.record,

data-seed,
trainptr);

}
else if (randomization.rule == 3)
(

load-by.classes (training.data,
test.data,
training.patterns..inclass,
random.record,
train-set,
test.set,
dimension,
classes,
data.seed,
train.ptr);

}
else
{

printf("\nerror in randomization rule");

}
}

/* End Load Input patterns */
* ********************************************************I*

/* Functions called by Load Input patterns

/* Function Name: load-separateTiles Number: 4.2 */
/* Description: This function loads the input data from a separate */
/* test and training -file randomly. */
/* *

/* Functions Called: 4.5 get.data
/* 4.7 randomize..ecords

/* Variables Passed In: training.data - Structure array
test-data - Structure array
train-set - Integer */
test.set - Integer

/* dimension - Integer
/* random.record - Integer array
/s data.seed - Unsigned

*train.ptr - FILE pointer */
/* *test.ptr - FILE pointer
/* *

/* Variables Returned: trainingdata - Structure array
test.data - Structure array

/* Date: 1i Nov 90 Revision: 1.0 */
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void load.separatefiles (struct data *training.data[],
struct data *test.data[],
int train.set,
int test.set,
int dimension,
int random-record[],
unsigned seed,
FILE *train.ptr,
FILE *test.ptr)

randomize-records(train.set,
random-record,
seed);

get.data(training.data,
train-set,
dimension,
train.ptr,
random.record);

randomize.records(test.set,
random-record,
seed);

getdata(test.data,
test.set,
dimension,
test-ptr,
random-record);

/* Function Name: load.from.single.file Number:4.3
/* Description: This function loads the training and test data */

randomly from a single file
/* */

/* Functions Called: 5.7 createdatarecord */
/* 4.5 get.data */
/* 4.7 randomize.records */
/* *

/* Variables Passed In: trainingdata - Structure array */
/s test-data - Structure array */

train-set - Integer
/* test.set - Integer

dimension - Integer
random.record - Integer array */

data-seed - Unsigned */
*train-ptr - FILE pointer */
*test-ptr - FILE pointer */

/* *

/* Variables Returned: training.data - Structure array
test-data - Structure array */

/* */

/* Date: 11 Nov 90 Revision: 1.0

void load.from.single.file (struct data *training-data[],
struct data *test.data[J,
int train-set,
int test.set,
int dimension,
int random.record[],

G-45



ursigned seed,
FILE *train.ptr)

int x, y;
int error - 0;
struct data *temp.data[TESTSET+TRAII.SET];

for (x = 0; x < train.set+test.set; x++)
{

create.datarecord(tempdata,
x,
Aerror);

if (error != 0)
{

printf("\n ** Out of memory for temp data *\n");
}

randomze.records(train.set + test-set,
random-record,
seed);

get.data (temp.data,
test.set + train.set,
dimension,
train.ptr,
random-record);

for (x = 0; x < train.set; x++)
training.data[x) = temp.dataEx);

for (x = 0; x < test.set; x++)
{

y = train-set + x;
test.data[x] = temp.data[y];

}

/ ************************************$$$$**$$$$$$$$$$$$$*$$*$$$***$*/

/* Function Name: load.byclasses Number: 4.4 */
/* Description: This function loads a user selected number of */

training patterns for each class randomly from a
single file. The remaining patterns are loaded 5/

as test patterns */

1* Functions Called: 5.7 createdata-record */
4.5 get.data */
4.7 randomize-records */
4.9 getrandomrecord

/* Variables Passed In: training-data - Structure array '/

/$ test-data - Structure array 5/

/* training-patterns-in.class - Integer array */
/* random-record - Integer array */
/* train.set - Integer */
/* test-set - Integer
/* dimension - Integer */

classes - Integer

data-seed - Unsigned */
/* *train.ptr - FILE pointer */

* */

/* Variables Returned: training.data - Structure array */
test-data - Structure array */

G-4*/
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/* Date: 11 Nov 90 Revision: 1.0 *

void load..by-.classes(struct data *trainig.data(J,
struct data *test-dataD],
jut training-.patterns..in..classfl,
jut random.record(J,
int train-set,
iut test-.set,
jut dimension,
jut classes,
u1nsigned seed,
FILE *fptr)

struct data *temp-data [TRAIN-SET+TESTSET];
jut number-.in..class[CLASSES];
jut z, y, record;
jut error = 0;
jut class = 0;

srand(seed);
for U(= 0; x < classes+1; x++)

number-.in-.class[x) = 0;

for (x = 0; x < train..set + test-.set; x++)

create-.data-.record~temp..data,
X,

kerror);
if (error !=0)

printf("\u ** Out of memory for temp data \n")

randomize..records(train..set+test..set,
random-.record,
seed);

get..data(temp..data,
train.set+test.set,
dimension,
fptr,
random-.record);

x 0;
do

get..random.record(classes,
&class);

class = class + 1;
number.in.class~classJ = number-.in.class[classJ+1;
if (training.patternsin-.class [class) +1 > uumber-.in..class (class)

do
get-.random.record(train..set+test..set,

&record);
while(tenp.data~recordJ->class != class);

trakjnin5.A~ta~x3 temipdata record];
temp-.data[record) temp.Aata~train-.set + test-.set -1);
train-set =train-.set -1;
x = x + 1;

else
number.in-class (class] = training.patterns-.in..class [class);
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}
while (train.set > 0);

for (x = 0; x < teat.set; x++)
test.data[r] a temp.data[x];}

/* End Functions Called by Load Input Patterns /

/* Function lame: get.data Number: 4.5
/* Description: This function loads the data into an array given */
1* by the user.

/* Functions Called: None */
/* Variables Passed In: training.data, test-data - Structure array */
/4 traiuset or test-set - Integer 4/
1* dimension - Integer
1* *train.ptr or *test.ptr - FILE pointer */

1* random.record - Integer array

/* Variables Returned: training.data, test-data - Structure array *1
/* Date: 11 Nov 90 Revision: 1.0 */

void get.data (struct data *data.record[],

int record-no,

int dimension,
FILE *fptr,
int randomzrecord[])

int x, y, record;

float vector-data;

int knovn.class;
for (x = 0; x < record-no; x++)
{

record = random.record[x);
for (y = 0; y < dimension; y++)

fscanf(fptr, %f", &vector.data);

data-record[recordJ->vector[yJ = vector.data;}
fscanf(fptr, "d",&knon.class);
data.record[record]->class = known_class;

data.record[record]->number = x;}
}

/* Function Name: normalize-data Number: 4.6 */
/* Description: This function energy normalizes each component of */

the input data by */
x(k) = sqrt{[x(k)2]/lxl'2-} */

/* Functions Called: None *1
/* *1

/* Variables Passed In: training.data, test.data - Structure array 4/

train-set or testset - Integer */
/* dimension - Integer */

/* */

/* Variables Returned: training-data, test-data - Structure array */
/* Date: 11 Nov 90 Revision: 1.0 $1
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void normalize.data (struct data *data.recordO,
int record-no,
int dimension)

double buffer;
float distance;
double exponent.2 = 2;
double exponent.1 = .5;
int X, y;
for (x = 0; x < record-no; x++)
{

buffer = 0;
for (y = 0; y < dimension; y++)
buffer = buffer + pou((double) (data.record[xJ->vector[y]),exponent.2);

distance = po(buffer, exponent.l);

for (y = 0; y < dimension; y++)
data-record Er->vector[y] = data.recordEx]->vectorfy]/distance;

buffer = 0;
for ( y 0; y < dimension; y++)
buffer = buffer + pow((double) (data-record[x]->vector[y]),exponent.2);

distance = pow(buffer,exponent-1);

}
}

/* Function NSame: randomize-records Number: 4.7 */
/* Description: This function returns an array containing random */

from 0 to the number of input patterns numbers */
/* *
/* Functions Called: 4.9 get.randomrecord ,/

/* */

/* Variables Passed In: train-set or test-set - Integer */
random-record - Integer array ,/
data.seed - Unsigned

/* */

/* Variables Returned: random-record - Integer array */
/* Date: 11 Nov 90 Revision: 1.0 */

void randomizerecords(int max.no,
int random-recordo,
unsigned seed)

int x, record, temp[TRAIN.SET+TESTSET];
for (x = 0; x < max.no; x++){

random.record[x] = x;
temp[x] = x;

}

x = 0;
if (seed != 0)
{
srand(seed);
do
{

get-random-record(max-no,
&record);

random.recordx] = -temp[record];
tempErecord] = temp[max.ni -;];
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max.no = max.no-1;
x= x + 1;}

while(max.no > 0);
}

/* Function Name: get.random.class.record Number: 4.8
/* Description: This function returns the random class and record */
/* number for a pattern with that class 5/

/* Functions Called: 4.9 getrandom.record
/* Variables Passed In: training or test-data - Structure array */
/* train.set or test-set - Integer
/* classes - Integer
/s *record - Integer pointer

/* Variables Returned: *record - Integer pointer
/* Date: 11 Nov 90 Revision: 1.0

void get.randomclass.record(struct data *data.record[],
int max-record,
int max-classes,
int *record)

{
int class;
int record.number;
get.randomrecord(maxclasses,

*class);
class = class + 1;

do
get.randomrecord(max.record,

&record.number);
vhile(data-recordrecordnumber]->class != class);
*record = record.number;

}

/* Function Name: getrandomrecord Number: 4.9
/* Description: This function returns a random number between 0 */
/, and maximum number -1 */

1* F-ictions Called: None
/* Variables Pansed In: max.number - Integer
I, *record - Integer pointer */

1, Variables Returned: *record - Integer pointer
1* Date: 11 Nov 90 Revision: 1.0

void get.r&ndom.record(int max.number,
int *record)

float x;
int buffer;
x = ((float)randO)/(32767* 65534);
buffer = (x * max-number + .5);

if (buffer > max.number -.5)
*record = 0;

else if (buffer < 0)
*record = 0;
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else
*record = buffer;

}

/* Function lame: calculate.euclidean.distance.between Number:4.10*/
/* .inputs */
/* Description: This function calculates the distance between */
/* each of the input data records by */
/* d(ij) = sqrt{sum[x(i)- x(J)]J2} *

/* Functions Called: lone */
/* Variables Passed In: training or test.data - Structure array e/
/C train.set or testset - Integer C/
/* dimension - Integer */

/* Variables Returned: None C/
/* Date: 11 Nov 90 Revision: 1.0 c/

void calculate.euclidean.distance.-between-.inputs (struct data *data-record0,
int record.no,
int dimension,
FILE *fptr)

float distance;
double buffer = 0;
double exponent. = .5;
double exponent.2 = 2;
int x, y, z;
for (x = 0; x < record.no; x++)
for (y = 0; y < record-no; y++)
{
buffer = 0;
for (z = 0; z < dimension; z++)

buffer = buffer + pow((double)(data.record[xJ->vector[z] -

data-record[y->vectr[z]),erponent.2);
distance = pow(buffer,exponnt.I);
fprintf(fptr, "\n %d %d distance = %f classes = %d %d ",

x,y,distance,data.record[x]->class,
datarecord[y]->class);

}

/* Function Name: get.weights Number: 4.11 C/
/* Description: This function reads the initial network weights */
/* from a file
/* *

/* Functions Called:None */
/* Variables Passed In:lode.record - Structure array C/
/c *fptr - FILE pointer */

/* Variables Returned: Node.record - Structure array
/* Date: 11 Nov 90 Revision: 1.0
***********************ccccc*cccccccccccccc*ccccccccccccccccccc****/

void get.weights (struct Node-data *node-record[],
FILE *fptr)

int x, y;
float weight;
while(fscanf(fptr,"/.d %d Yf", Ix, ky, &weight) != EOF)

node.record[x] ->weight Ey) = weight;
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/*************e*e***********e**eee*******s*******ee/*

/* Function Name: get-sigmas lumber: 4.12 */
/I Description: This function reads the initial network sigmas */
1* from a file

/* Functions Called:None */
/* Variables Passed In:Node.record - Structure array */

*fptr - FILE pointer */
/* */
/* Variables Returned: Node.record - Structure array */
/* Date: It Nov 90 Revision: 1.0 5/

void get.sigmas(struct Node.data *node.record[],
FILE *fptr)

int x, y;
float sigma;
while(fscanf(fptr, "%d %f", Ax, ky, 'tsigma) != EOF)

noderecord[xz->sigma[y] = sigma;

/* Function Name: get-outut, lumber: 4.13 */
/* Description: This function reads the initial network outputs "I

from a file */
/* */

/* Functions Called:None */
/* Variables Passed In:Node.record - Structu,' array
/* *fptr - FILE pointer

/* Variables Returned: Node.record - Structure array 5/
/* Date: 11 Nov 90 Revision: 1.0
/*********************************************************************

void get.outputs(struct Node-data *node.record[N,
FILE *fptr)

int x;
float output;
while(fscanf(fptr, "%d %f",kx, &output) != EOF)

node.record[x]->output = output;

G.5 NETINIT

/* Module Name: NETINIT.C Number:5.0 */
/* Description: This module provides the initialization routines */
/s for the nodes of a neural network
/* Modules Called: None

/* Functions Contained: 5.1 initializenodeweights
/* 5.2 initialize-node-connections

5.3 initialize.node.sigmas 5/

5.4 initializenode.outputs
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/* 5.5 initialize.noe.transfer.function */

/, 5.6 create.node 5/

/5 5.7 create.data.record */
/5 5.8 disconnect.node
/* 5.9 correct.node.weights */
/*5*

/* Date: 10 Noy 90 Revision: 1.0 */

*include "netvrble.h"
*include "netfnctn.h"

/sssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss/

/* Function Name: initialize.node.weights Number: 5.1 */
/* Description: This function initializes the weights between 5/

/5 connected nodes to the range -1 to 1. For un-
connected nodes, the weights are set to 0 5/

/s Functions Called: None
/* Variables Passed In: Node.record - Structure array
/s total.nodes - Integer */
/5 weight.seed - Unsigned */

/* Variables Returned: Node-record - Structure array
/s Date: 11 Nov 90 Revision: 1.0 5/

void initialize.node.weights (struct Node.data *noderecordO,
int total.nodes,

unsigned seed)

{
int x, y;
float fanout = 0;
double z = -1.0;
double w = 1.0;

srand(seed);
for (x = 0; x < total.nodes; x++)
{
fanout = 0;
for (y = 0; y < total.nodes; y++)
if (node.record[x->connect[y 1)

fanout = fanout + 1;
for (y = 0; y < total.nodes; y )
if (node.recordExj->connect[y == 1)
{

w = (double)randO;
node.record[x->weight[y] = (pow(zw)*((float)randO)/(65534*32767));

I
else

node.record[x->weight[y] = 0;I

/5 Function Name: initialize-node-connections Number: 5.2
/* Description: This function initalizes the connections between s/
/s nodes which should be connected to 1. The nodes s/
/s which shouldn't be connected are set to 0. These s/
/s connections are dependent on network topology s/
/s *

/* Functions Called: None
/* Variables Passed In: Node-record - Structure array

numberoflayers - Integer 5/
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/. nodes.in.layer - Integer array ./
/e starting-node.in.layer - Integer array */
1* network-type - Integer */
/e total.nodes - Integer 5/

/* Variables Returned: Noderecord - Structure array */
/w Date: 11 Nov 90 Revision: 1.0 5/

void initialize.node.connections(htruct Node-data *node.recordO,
int number.of.layers,
int nodes.in.layerO,
int starting.node.layer[l,
int network.type,
int total-nodes)

{
int layer.no, x, y, layer;

switch (network-type)
{

case 1:
for (x = 0; x < total.nodes; x++)

for ( y 0 0; y < total.nodes; y++)
node.record[x]->connect y a 0;

for (layer.no = 1; layer-no < number.of.layers +1; layer.no++)
for (x = starting.node.layer[layer.no]; x < starting.node.layer[layer.no]+nodes.in.layer[layer.no; x++)
for (layer 0; layer < number.of.layers + 1; layer ++)

for ( y = starting.node.layer[layer3; y < starting.node.layer[layerh+nodes-in.layer[layer]; y++)
if (layer == layer-no -1)
node.record[x]->connect~y - 1;

else
noderecord[x]->connect[y] = 0;

break;

default:
printf("\n Error in network selection");

break;

/* Function Name: initialize.nodesigmas Number: 5.3 */
/* Description: This function initializes the node sigmas to a

random value between 0 and 1 *

/* Functions Called: None */
/* Variables Passed In: Node.record - Structure array 5/

/5 total-nodes - Integer ./
/s sigma-seed - Unsigned 5/
/* */
/* Variables Returned: Node-record - Structure array */
/* Date: 11 Nov 90 Revision: 1.0

void initialize.node.sigmas(struct Node.data *node.recordO,
int total.nodes,
unsigned seed)

int x, y;
srand(seed);
for (x = 0; x < total-nodes; x++)

for (y = 0; y < total-nodes; y++)
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node.record[xJ->sima~y] x (((float)randO)/(32767*65534));

/* Function Name: initialize.node.outputs Number: 5.4
/* Description: This function initializes the outputs for all the */
/5 nodes to 0. */

/s Functions Called: None
/* Variables Passed In: Node.record - Structure array c/
/5 total-nodes - Integer
/c */
/* Variables Returned: Node.record - Structure array 5/
/* Date: 11 Noy 90 Revision: 1.0

void initialize.nodo.outputs(struct Node.data *node.record[l,
int total.nodes)

int node;
for (node 0 0; node < total.nodes; node++)
node.record[node]-)output = 0;

/* Function Name: initialize.node.transfer.function lumber: 5.65/
/* Description: This function initializes the transfer function c/

for each node in the network. These transfer 5/

/c functions are depenedent on the layer the node 5/

Ic is assigned. 5/
/c *

/* Functions Called: None */
/c Variables Passed In: Node-record - Structure array

number.of.layers - Integer
/* nodes-in.layer - Integer array
/c starting.node-in..layer - Integer array c/
/5 transfer-function - Integer array
/5 ,

/c Variables Returned: Node.record - Structure array
/* Date: 11 Nov 90 Revision: 1.0
/ccccccccccccccccccccccccccccccccccccccc*cccccccsccccccccccscccccccs/

void initialize.nodetransfer.function(struct Node.data *node~record[],
int numberof.layers,
int nodes.in.layer[l,
int startingnode.layerD,
int transfer.function[l)

int layer, node;
for (layer = 0; layer < numberof.layers +1; layer++)
for (node = starting.node.layer[layer]; node < starting.node.layer[layer]+nodes- in.layer[layer]; node++)
node.record[node]->transferfunction = transfer.function[layerJ;

* Function Name: ,rete_node Number: 5.6
/* Description: This function creates a data structure for each c/
/c node in the izetwork

/* Functions Called: None
/* Variables Passed In: Node.record - Structure array

new-node - Integer
*error - Integer pointer
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/* *

/* Va.riables Returned: *error - Integer pointer */
/* Date: 11 Nov 90 Revision: 1.0 */

void create.node(struct Node.data *node.record[],

int new.node,
int *error)

if((node.record[new-node] (struct Node-data *)malloc(sizeof(struct Node.data))) NULL)
*error 1;

/* Function Name: create.data.record Number: 5.7 */
/* Description: This function creates a data structure for each */
/* training and test pattern used in the network */
/* */

/* Functions Called: None */
/* Variables Passed In: Node-record - Structure array
/* new.record - Integer */

*error - Integer pointer */
/* */
/* Variables Returned: *error - Integer pointer
/* Date: 11 Nov 90 Revision: 1.0

void create.data.record(struct data *data.recordD,
int new.record,
int *error)

{
if((datarecord[nev.recordJ= (struct data *)malloc(sizeof(struct data)))

-NULL)
*error 1;

}

/* Function Name: disconnect.node Number: 5.8
/* Description: This function disconnects any nodes which are */
/* no longer required by the network */

/* Functions Called: None */
/* Variables Passed In: Node.record - Structure array
/* current.node - Integer
/* total-nodes - Integer

/* Variables Returned: Noderecord - Structure array
/* Date: 11 Nov 90 Revision: 1.0

void disconnect.node(struct Node.data *node-record[,
int current-node,
int total-nodes)

int X;
for (x = 0; x < total.nodes; x++)

node-record[x]->connect[current-node] = 0;
node.record[current.node]->connect[x] = 0;

}

/* Function Name: correct.nodeweights Number: 5.9
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/* Description: This function ensures the weights always range */
between -100 and 100

/* */

/* Functions Called: None */
/* Variables Passed In: Node.record - Structure &rray */

total.nodes - Integer
/* */

/* Variables Returned: Node-record - Structure array
/* Date: 11 Nov 90 Revision: 1.0 c/

void correctnodeweights(struct Node.data *node.record(],
int total-nodes)

{
int x, y;
for (x = 0; x < totalnodes; X++)
for (y = 0; y < total-nodes; y++)

if(node.record[x3->weight[y > 0)
{
if(noderecord[x)->weight[y] > 100)
node.record[xJ->weight[y = 100;

else if (noderecord[x3->weight[y < .0001)
node.record[x]->weight[y] = .0001;

}
else
{

if(noderecord[x]->weight[y] < -100)
noderecord[x]->weight[y = -100;

else if (node.record[xJ->weight yJ > -. 0001)
noderecord[x)->weight[y] = -. 0001;

}

G.6 NETSHIOW

/* Module Name: NETSHOW.C Number: 6.0
/* Description: This module contains the functions which display c/
/c or file network data.

/* Modules Called: None ./
/* Functions Contained: ci
/* 6.1 file.data 6.2 file-randomization-rule c/
/* 6.3 file.seeds 6.4 file.nettopology
/* 6.5 file.transferfunctions 6.6 filenodes.atdata.pointsinfo*/
/* 6.7 file.center.at.avgs.data 6.8 filek.means.data ci
/* 6.9 filekohonen.data 6.10 file.MSE.data
/* 6.11 fileCFM.data 6.12 fileCE-data c/
/* 6.13 file-matrix.data 6.14 fileparzenwindowdata */
/* 6.15 file.sigma.data 6.16 print.last.layeroutput c/
/* 6.17 file.last.layeroutput 6.18 print.data */
/* 6.19 file.data 6.20 print.node-data
/* 6.2i f iienode-data 6.22 print nodooci6ht -/
/* 6.23 file-node.weights 6.24 print-node-sigma
/* 6.25 printnodeoutput 6.26 printnode.transferfunction ,/
/* 6.27 file.network.parameters 6.28 file.errordata
/* 6.29 file.classcount

/* Date: 11 Nov 90 Revision: 1.0
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*include "netvrble.h"
*include "netfnctn.h"

/******************************************************************/*
/* Function Name: file.data.parameters Number: 6.1
/* Description: This function files the data parameters such as */
/* name of data files, length, dimension and classes. /

/* Functions Called: None */
/* Variables Passed In: train-file - Character array */
/* test.file - Character array */
1* train-set - Integer */
1* test.set - Integer
/e dimension - Integer
/* classes - Integer 9/

1* **ptr - File pointer
/* Variables Returned: */
/* Date: 11 Nov 90 Revision: 1.0
/ **eee*sees**seee****e*ese******ee*e***ee*eeeeees*e.*e*see/**

void file.data.parameters(char train.file[],

char test.fileO,

int train.set,
int test.set,
int dimension,
int classes,
FILE *fptr)

fprintf(fptr,"\n Training file = %s",trainjile);
fprintf(fptr," Test file = %s", test.file);
fprintf(fptr,"\n with %d training vectors and %d test vectors",

train.set,test.set);
fprintf(fptr,"\n dimension = %d classes = %d",

dimension, classes);
fprintf(fptr,"\n");

/* Function Name: file-randomization-rule Number: 6.2
/* Description: This function files the method by which the data */
1* was loaded.

/* Functions Called: None 9/

1* Variables Passed In: randomization.rule - Integer */
/9 training-patternsin.class - Integer array */

classes - Integer

*fptr - File pointer */

/* Variables Returned: None
/9 Date: 11 Nov 90 Revision: 1.0
/ e*e*ee*e**ee*seesee*eee*eeeee*eeesseeeesee..e*es*s*****ee*s*se**e../

void filerandomization.rule(int randomization-rule,
int training.patterns.in.classO,
int classes,
FILE *fptr)

int x;

switch(randomization.rule)

fprintf(fptr,"\nrandomization rule is '0;
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case 1:
fprintf(fptr," load from separate files");
break;

case 2:
fprintf(fptr," load from single files");
break;

case 3:
fprintf(fptr,"load by class ");
for (x = 1; x < classes + 1; x++)

fprintf(fptr,"\n training patterns in class %d =d",
x, training.patternsinclass[));

fprintf(fptr,"\n");

/* Function Name: file-seeds Number: 6.3
/* Description: This function files the seeds used to randomly set */
/4 network parameters and load the data.
I* *

/. Functions Called: None
/* Variables Passid In: ughtseed - Unsigned

sigma.seed - Unsigned */
data.seed - Unsigned */

/* record.seed - Unsigned
*fptr - File pointer

/* Variables Returned: None
/* Date: 1i Nov 90 Revision: 1.0
/***********************************s*********************c*****c***/

void file-seeds(unsigned wght.seed,
unsigned sigma.seed,
unsigned data.seed,
unsigned record-seed,
FILE *fptr)

fprintf(fptr,"\nwoight seed = %u sigma seed = %u data seed = Xu record seed =
ught.seed, sigma-seed, data.seed, record-seed);

fprintf(fptr,"\n");

/* Function Name: filenet.topology Number: 6.4 */
/* Description: This function files the topology of the network */

such as feedforward with number of layers

/* Functions Calles: None
/* Variables Passed In: network.type - Integer
/* number-of.nodes - Integer
/c nodesin.layer - Integer array
/c *fptr - File pointer
/* *

/* Variables Returned: None
/* Date: 11 Nov 90 Revision: 1.0
/******************************************************/

void filenet.topology(int network.type,
int numberoftlayers,
int nodesjinlayer[,
FILE *fptr)
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int x;
if(network.type == 1)

fprintf(fptr,"\n network type = feedforward with number of layers = %d",
number.of.layers);

for (x 0; x < number.of.layers+i; x++)
fprintf(fptr,"\n nodes in layer %d = %d",x, nodes.inlayer[x]);

fprintf(fptr,"\n");

******** e**s*ee *ec*.. *** ******************************** cc c*****

/* Function Name: file-tranferfunctions Number: 6.5 */
/* Description: This function files the transfer function for each */
/. node in the network. */

/* Functions Called: None
/* Variables Passed In: network-type - Integer 5/

/* number-of.layers - Integer

/* startingnode.in.layer - Integer array */
Node-record - Structure array 5/

/5 *fptr - File pointer */

/* Variables Returned: None

/* Date: 11 Nov 90 Revision: 1.0 */
******************ce*c**************eesscec*cesescs*ce**********/

void filetransfer.functions(int network.type,

int number.oflayers,
int starting-nodein.layer[],
struct Node.data *node-record[],

FILE *fptr)

int x;

if (network.type == 1)
{

for (U = 0; x < number.of.layers+l; x++)
switch(node.recordistartng.nodeinlayer Ex] ]->transfer-function)
{

case 1:

fprintf(fptr,"\n layer %d transfer function = sigmoid",x);
break;

case 2:

fprintf(fptr,"\u layer %d transfer function = rbf",x);
break;

case 3:
fprintf(fptr,"\n layer %,d transfer function = linear",x);
break;

default:

break;
}

}
fprintfU(Ptr,"\n") ;

}

/* Function Name: file.nodes.atdatapoints.info Number: 6.6 5/

/* Description: This function files the parameters used to train c/
a layer of nodes using the nodes.at.data.points */
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algorithm
/* */

/* Functions Called: None

/* Variables Passed In: current-layer - Intege/
output.threshold - Float

/e sigma.threshold - Float */
/* *fptr - File pointer

/* Variables Returned: None
/* Date: 11 Nov 90 Revision: 1.0 */
/4 *4 * 4*44*4444.4* 4**4********* 4*4*444444* * 44444******

void :file.nodes.at.datapoints.info(int layer,
float output.threshold,

float sigma.threshold,

FILE *fptr)

fprintf(fptr,"\nlayer %d nodes at the data points',layer);
fprintf(fptr,"\n output threshold = 7f sigma threshold = %f".

output-threshold, sigma.threshold);
}/

/

/* Function Name: file.center.at.class.avgs.data Number: 6.7 */
/* Description: This function files the parameters used to train */
/4 a layer of nodes using the center.at.classavgs 4/

/4 algorithm 4/

/* Functions Called: None */
/* Variables Passed In: current.layer - Integer

averagethreshold - Float
/4 sigma-threshold - Float

*fptr - File pointer 4/

/4 Variables Returned: None 4/

/* Date: 11 Nov 90 Revision: 1.0 4/

void filecenter.at.class.avgs-data(int layer,
float averagethreshold,

float sigma-threshold,
FILE *fptr)

{
fprintf(fptr,"\n layer %d center at class avgs",layer);
fprintf(fptr,"\n average threshold = %f sigma threshold =f",

average-threshold, sigma-threshold);}

/* Function Name: filec.means.data Number: 6.8 */
/* Description: This function files the parameters used to train */
/4 a layer of nodes using the k.meanscluster
/* algorithm 4/

/* Functions Called: None 4/

* Variables Passed In: current.layer - Integer */
clusters - Integer

/4 *fptr - File pointer
f$ */

/* Variables Returned: None */

/* Date: 11 Nov 90 Revision: 1.0 */

void filek.means.data(int layer,
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int clusters,
FILE *fptr)

fprintf(fptr,"\n layer %d K means cluster",layer);
fprintf(fptr,"\n number of clusters = %d", clusters);

/* Function Name: file.kohonen.data Number: 6.9 e/
/* Description: This function files the parameters used to train */

a layer of nodes using the trainviakohonen */
/* algorithm
/* */
/* Functions Called: None
/* Variables Passed In: current-layer - Integer

/* nodes.x - Integer
/e nodes.y - Integer
/* *fptr - File pointer 4/

/* 4/
/* Variables Returned: None
/* Date: 11 Nov 90 Revision: 1.0
****444****44e4**4***************e*4*********************/

void filekohonen.data(int layer,
int nodes-x,
int nodesy,
FILE *fptr)

fprintf(fptr,"\nlayer-%d Kohonon Training",layer);
fprintf(fptr,"\n nodes in x direction = %d",nodes.x);
fprintf(fptr,"\n nodes in y direction- %d", nodes-y);

/* Function Name: file.MSE.data Number: 6.10 4/

/* Description: This function files the parameters used to train e/
/* a the remaining layers of nodes using the 4/

/4 SE.remaining.layers algorithm

/* Functions Called: None
/* Variables Passed In: current-layer - Integer 4/

NSE-iterations - Integer
/4 NSEerror.delta - Float 4/

/4 MSE.momentum - Float 4/

/4 MSE-successes - Integer
/4 MSE-eta - Float

/* *fptr - File pointer */
/* */

/* Variables Returned: None 4/

/* Date: 11 Nov 90 Revision: 1.0 */
/4*44*****4*44444*.****s***4******see*ee******44***/*

void fileMSE.data(int layer,
int MSE.iterations,
float MSE-error-delta,
float MSE-momentum,
int MSE.successes,
float XSE-eta,
FILE *fptr)

fprintf(fptr,"\nMSE layer %d and all others",layer);
fprintf(fptr,"\n iterations = %d error delta = %f momemtum= %f",

MSE-iterations, MSE.error-delta, MSE.momentum);
fprintf(fptr,"\nsuccess = 'd eta = %f",MSE-successes,MSE.eta);
fprintf (fptr, "\n");
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/* Function Name: fileCFMIdata Number: 6.11 */
/* Description: This function files the parameters used to train */
/* a the remaining layers of nodes using the */
/* CFM-remaining.layers algorithm
/* */

/* Functions Called: None */
/* Variables Passed In: current.layer - Integer */
/* CFM.alpha - Float */
/s CFM-beta - Float */
/s CFMeta - Float
/* CFl-zeta - Float */
/* CFM.successes - Integer */
/* CFM.iterations - Integer 5/
/* CFM.momentum - Float */

/* CFM-delta - Float */
/* *fptr - File pointer */

/* Variables Returned: None */
/* Date: 11 Nov 90 Revision: 1.0 */
***********55**********5*55****555*5***555************s****

void fileCFM-data(int layer,
float CFM-alpha,
float CFM.beta,
float CFM.ea,
float CFM.zeta,
int CFM-successes,
int CFN.iterations,
float CFM.momentum,
float CFM.delta,
FILE *fptr)

fprintf(fptr,"\nCFM layer %d and all others",layer);
fprintf(fptr, "\nalpha = %f beta = %f eta = %f zeta =f",

CFMLalpha, CFX.beta, CFM.eta, CFM-zeta);
fprintf(fptr,'\nsuccesses = %d iterations = %d momentum= %f delta =YI,

CFM.successes, CFM-iterations, CFM.momentum, CFMdelta);
fprintf(fptr,"\n");

/* Function Name: file.CE.data Number: 6.12 s/
/* Description: This function files the parameters used to train */
/* a the remaining layers of nodes using the */
/s CE.remaining.layers algorithm

/* Functions Called: None */
/* Variables Passed In: current.layer - Integer */
/* CE.epsilon - Float */
/* MSE-iterations - Integer
/* MSE-momentum - Float
/5 MSEeta - Float

MSE.successes - Integer
*fptr - File pointer

/* Variables Returned: None
/* Date: 11 Nov 90 Revision: 1.0
/ss**sssss**sssssssss*sss******ss*ssssssssss**s***ssss********s*s**

void fileCE-data(int layer,
float CE-epsilon,
int CE.iterations,
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float CE.momentum,
float CE.eta,
int CE.successes,
FILE *fptr)

fprintf(fptr,"\nCE layer %d and all others",layer);
fprintf(fptr, "\neplison = %f iterations = %d momentum: %f",

CE.epsilon, CE.iterations, CE.momentum);
fprintf(fptr,"\neta = %f errors = %d",

CE-eta, CEsuccesses);
fprintf (fpt r,'Anil);

/* Function lame: filematrx.data Number: 6.13 */
/* Description: This function files the parameters used to train */
/* a the remaining layers of nodes using the
/* globalMSE-algorithm */
/* */
/* Functions Called: None */
/* Variables Passed In: current.layer - Integer 5/

/* *fptr - File pointer */
/* */

/* Variables Returned: lone 5/

/* Date: 11 Nov 90 Revision: 1.0 */
-**** .s*s*ss******** s*****s*** ** **************ss******************

void file.matrix.data(int layer,

FILE *fptr)
{

fprintf(fptr,"\nLayer %d Linear by Matrix Inversion",layer);}

/* Function Name: file.parzen_indow.data Number: 6.14 */
/* Description: This function files the parameters used to train */
/s a the remaining layers of nodes using the

/* Pllimplementation algorithm
/* */

/* Functions Called: None */
/* Variables Passed In: Node-record - Structure array */
/* nodes-inlayer - Integer array */
/s starting.node-inlayer - Integer array 5/

/5 current-layer - Integer */
/* *fptr - File pointer 5/

/* */

/* Variables Returned: None 5/

/* Date: 11 Nov 90 Revision: 1.0 */
/****s**************5s5****s******sssss*****s******sssssss*s****/*

void fileparzen.window.data(struct Node-data *node-record[,

int nodes.in.layer[l,
int starting.node-in.layer[l,

int layer,

FILE *fptr)

int x, y, current-node, previous.layer.node;
int total.nodes = 0;

fprintf(fptr,"\nParzen window for layer %d",layer);
for (x = 0; x < nodes.in.layer[layer; x++)

current.node = starting-node.in.layer[layer]+x;

fprintf(fptr,"\nnode %d with class %d connected to: \n",
current.node, node.record[current.nodej->class);
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total-.nodes =0;
for (y = 0; y < nodes..in..layer~layer-1); y++)

previous-.layer.node =starting.node..in..layer (layer-i) +y;
if(node..record[current-nodej ->connect [previous..layer-.nodeJ ==1)

fprintf(fptr,"%d ",previous-layer-.node);
total-.nodes = total..nodes+1;

I

fprintf(fptr,"\n total nodes for this node is %~d ",total..nodes);

/* Function Name: file.sigma.data Number: 6.15 e
/* Description: This function files the parameters used to train *

/* a the sigmas of an REF notwork by any of the C
following algorithms~*

/c a) scale..according.to..interference
/c ~b) set..sigmas..to..constant .

c) set.sigma-.at..P.neighbor.avg 4

/* Functions Called: None
1* Variables Passed In: curzent-.layer - Integer

/* sigma-.rule - Integer
/*interference-.threshold - Float
/s sigma-.factor - Float
1* sigma-.constant - Float *
/s p..neighbors - Integer
/* *fptr - File pointer

/* Variables Returned: None
/* Date: 11 Nov 90 Revision: 1.0 5

void file-.sigma.data(int layer,
int sigma-.rule,
float interference-.threshold,
float sigma-factor,
float sigma-.constant,
mnt p..neighbors,
FILE *fptr)

fprintf(fptr,"\nsigmas in layer Vd",layer);
switch(sigma..rule)

case 1:
:fprintf(fptr,\nsigmas scaled by constant");
fprintf (fptr, "interference threshold = %/f sigma factor=

interference-.threshold, sigma..factor);
break;

case 2:
fprintf(fptr,"\nerror, no training rule");
break;

case 3:
fprintf(fptr,"\nsigmas set to a constant");
fprintf (fptr," sigma constant '/.f" ,sigma..constant);
break;

case 4:
fprintf (fptr,"\n P neighbors");
fprintf(fptr," p-.neighors = %d",p..neighbors);
break;
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default:
break;

}
fprintf (fpt r, 11\n");

/* Function Name: print-last-layer.output Number: 6.16 cf
/* Description: This function prints the outputs of the last */

layer of the network, giving the node number
1* node output.

re 5/

/c Functions Called: None 5/

/c Variables Passed In: Node-record - Structure array 5/

/c nodes.in.layer - Integer array 5/

/$ starting.node-in-layer - Integer array 5/

/c last.layer - Integer

/c Variables Returned: None
/, Date: 11 Nov 90 Revision: 1.0 5/

void print.last.layer.output(struct Node-data cnode.record[],
int nodes.in-layer[J,
int starting.node-in.layer[J,
int last.layer)

int x, last.layer.node;
for (x = 0; x < nodes.in-layer[last.layer]; x++)
{
last.layernode = starting.node-in.layer[last-layer] + x;
printf("\n node %d output = f",last.layernode

,node.record[lastlayer.node]->output);
}

/* Function Name: file.lasl..layeroutput Number: 6.17 */
/* Description: This function files the outputs of the last
/c layer of tho network, giving the node number
/c node output, data record number and class.
/c *

/* Functions Called: None
/* Variables Passed In: training or test-data - Structure array 5/
/c Node-record - Structure array

record - Integer */

/c nodes.in.layer - Intege.. array
/c starting.node.in.layer - Integer array c/
/c last.layer - Integer
/c *fptr - File pointer 5/
/*c*

/* Variables Returned: None
/* Date: 11 Nov 90 Revision: 1.0

void filelast_2ayer.output(struct data *data-record[],
struct Node-data *noderecordo,
int record,
int nodes.in.layer[I,

int startingnode.in.layerf,
int last.layer,
FILE *fptr)

int x, lastlayernode;
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fprintf(fptr,'\n\n element %d ",record);
fprintf(fptr,"is data record %d vith class d",data.record[record]->number

,data.record[recordj->class);
for (x = 0; x < nodes.in.layer[last.layerJ; x++)
{

last.layernode = starting.nodein.layerlast-.ayer + x;
fprintf(fptr,"\n node %d output = %f",last.layer.node

,node.record[lat.layer.nodej->output);
}

Is Function Name: print-data Number: 6.18 c/
/* Description: This function prints the data of the input SI

f, files as read by the software

/c Functions Called: None */
/c Variables Passed In: training or test-data - Structure array c/
It train.set or test-set - Integer
Ic dnimension - Integer *I

/* Variables Returned: None */
/c Date: 11 Nov 90 Revision: 1.0 */
/ ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc/

void print.data(struct data cdata.recordO,
int record.no,
int dimension)

int x, y;
for (x =0; x < record.no; x++)
{
for (y = 0; y < dimension; y++)

printf(" %lfdata.record[x->vector[yj);
printf("\n %d \n\n ", data.record[xJ->class);

}

/c Function Name: file.data Number: 6.19 c/
/* Description: This function files the data of the input

files as read by the software */

/A Functions Called: None
/c Variables Passed In: training or test-data - Structure array */

train.set or test.set - Integer 5/
/c dimension - Integer *I
/c *fptr - File pointer
/*c*
/*c*

/* Variables Returned: None
/c Date: 11 Nov 90 Revision: 1.0
**c*c****ccccc*ccccccccccc*csc '*ccc*ccccccc*ccccccccc***cccccc***cc*/

void file.data(struct data *data-record[,
int record-no,
int dimension,
FILE *fptr)

int x, y;
for (x = 0; x < record.no; x++)

for (y = 0; y < dimension; y++)

G-67



fprintf(fptr," %f",data.record[x)->voctor[yJ);
fprintf(fptr,"\n %d \n \n ", da.a-record[x]->class);}

/* Function Name: print..node.data Number: 6.20 */
/* Description: This function prints the data structure of each */

node in the network including the weights, */
/5 sigmas, and the transfer functions

/e Functions Called: lone */
/* Variables Passed In: Node.record - Structure array e/
/, current.node - Integer
/e total.nodes - Integer

/* Variables Returned: None */
/* Date: 11 Nov 90 Revision: 1.0 */
/*ssss*ssessssss****sssssssssssss*sssesssssssssssssssssesssss/***

void printnode.data(strirct .e..data *node.record[],
int current.node,
int total-nodes)

int x;
printf("\ndata for node %d",current.node);
for (x = 0; x < total.nodes; x++)
if (node.record[current-node]->connect[x] - 1)
printf("\nweight %d = %fx,node-record[current.node->weight[xJ);

if (node.record[currentnode]->transfer.function ==2)
for (x = 0; x < total-nodes; x++){

if (node.record[current-nodeJ->connect[x == 1)
printf("\nsigma = %f" ,noderecord[currentnode]->sigma[xJ);

}
else

printf("\n sigma %d = %f",current.node
,node.record[current.node->sigma[current_node]);

printf("\ntransfer function = %d",node.record[currentnode]->transferfunction);
I
*********************************************************************

/* Function rame: file-node..data Number: 6.21 */
/* Description: This function files the data structure of each 5/

node in the network including the weights, */
sigmas, and -the transfer functions

/* */

/* Functions Called: None
/* Variables Passed In: Node-record - Structure array

current.node - Integer 5/

total-nodes - Integer 5/

*fptr - File pointer
/* */

/* Variables Returned: None 5/

/* Date: 11- Nov 90 Revision: 1.0

void filenode.data(struct lode-data *node-record[],
int current-node,
int total.nodes,
FILE *fptr)

int x;
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fprintf(fptr,'\ndata for node %d",current.node);
for (x = 0; x < total-nodes; x++)
{
if (node.record[current.node]->connect[x - 1)
{
fprintf(fptr,"\n wght %d = %f ",x,node.record[current.node]->weight[x]);
if (node.record[current.node)->transfer.function - 2)

fprintf(fptr," sigma %d = %f ",x,node.record[current.node]->sigma[x);

}
I

it (node.record[current.node]->transfer.function == 1)
fprintf(fptr,"\nsirAa %d = %f",current.node

,node.record[current.nodeJ->sigmaEcurrent.node]);

fprintf(fptr,"\ntranrfer function = %d",node.record[current.nodej->transferfunction);
}

/$ aaaa**%*aaea*$$aaaIla*aaaaaaaa$aa**a***a$$$a$a$eaaaa$aa$ae/

/* Function Name: print.node.weights Number: 6.22 */
/* Description: This function prints the weights for each */

/* node in the network. a/
/* */

/* Functions Called: None a,
/* Variables Passed In: lode.record - Structure array

/* current..node- - Integer */
/a total-nodes - Integer a,
/* *

/* Variables Returned: None a,
/e Date: 11 Nov 90 Revision: 1.0
/**************************************************/*

void print.nodeweights(struct lode.data *node-record[]J,

int current.node,

int total.nodes)

int x;

printf("\nlode %d",currentnode);

for (x = 0; x < total-nodes; x++)

if (node-record[current-node]->connect[xJ == 1)
printf("\nweight %d = %f",x,node.record[current-nodeJ->weight[x]);

/* Function Name: filenodeweights b lumber: 6.23 */
/* Description: This function files the weights for each 5/

node in the network. 5/
/* */

/* Functions Called: None
/* Variables Passed In: Node.record - Structure array

I. current.node - Integer a/

/a total-nodes - Integer

*fptr - File pointer
/*a*

/* Variables Returned: None
/* Date: 11 Nov 90 Revision: 1.0

void file.node.weights(struct lode-data *node.record[J,
nt current.node,

int total.nodes,
FILE *fptr)

{
int x;

fprintf(fptr,"\nNode %d",current-node);

for (x = 0; x < total.nodes; x++)
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if (node.record[currentnode]->connect[x] == 1)
fprintf(fptr,"\nweight %d = %f",xnoderecord[currentnode]->weight[x]);

I

/* Function Name: print.node.sigma Number: 6.24 */
/* Description: This function prints the sigmas for each
/* node in the network. *//* *

/* Functions Called: None
/* Variables Passed In: Node.record - Structure array */
/* current.node - Integer */
/* total-nodes - Integer *//* */
/* Variables Returned: None */
/* Date: 11 Nov 90 Revision: 1.0 */
/ ***** *************** ** *4**4* ***4** * ***/

void printnode.sima(struct Node.data *node.recordO,
int current.node,
int total.nodes)

int x;
printf("\nlode %d",currentnode);
if (node.record[current.node]->transfer-function == 2)
for (x = 0; x < total-nodes; x++)
{

if (node.record(current.node]->connect[xJ == 1)
printf("\n sigma %d = Vf" ,x, node-record [current.node) ->sigmaEx]);

}
else

printf("\n sigma %d = %f",current.node,
noderecord[current.node]->sigma[current.node));

/* Function Name: print-nodeoutput Number: 6.25 */
/* Description: This function prints the output for a given
/* node in the network. *//* *
/* Functions Called: None */
/* Variables Passed In: Node.record - Structure array */
/4 current-node - Integer */
/* */
/* Variables Returned: None */
/* Date: 11 Nov 90 Revision: 1.0 */

**** 4****** *****4*** ******* **********4********

void print.nodeoutput(struct Node.data *noderecord[],
int current-node)

{
printf("\n Node %d output = Vi'l,current.node, noderecord[current.nodeJ->output);

I

/* Function Name: print.node.transfer.function Number: 6.26 */
/* Description: This function prints the transior function for a

given node in the network.
/* */

/* Functions Called: None
/* Variables Passed In: Node.record - Structure array
/* curxent.node - Integer
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/e total-nodes - Integer
/* */

/* Variables Returned: None
/* Date: 11 Nov 90 Revision: 1.0 */

void print.-node.transfer.function(struct Node-data *node.recordtj,
int currentnode)

{
printf("\n No. ',I transfer function = d",current.node,noderecord[currentnode)->transfer.function);

}

/* Function Name: file.networkparameters Number: 6.27 */
/* Description: This function files the network parameters, */
/c network type, number of layers, nodes in each */
/c layer, node transfer functions, training rules */
/c and the interconnection topology for the network */
/c nodes */

/* Functions Called: None
/* Varii s'es Passed In: Node-record - Structure array */
/c network.type - Integer */
/c number.of.layer - Integer */
/c nodes.in.layer - Integer array
/c training-rule - Integer array */
/c transfer.function - Integer array
/c sigma.rule - Integer

total.nodes - Integer /
/* *fptr - File pointer */
/*c*

/* Variables Returned: None
/* Date: 11 Nov 90 Revision: 1.0

void filenetwork.parameters(struct Node-data *node.record[],
int network.type,
int numberof.layers,
int nodesin.layer[J,
int training.rule[],
int transfer.function[],
int sigma.rule,
int total-nodes,
FILE *fptr)

{
int x, y;
fprintf(fptr,"\nNetwork Parameters");
fprintf(fptr,"\network type = %d",network.type);
fprintf(fptr,"\nNumber of layer = %d",number.of.layers);
for (x = 0; x < numberof.layers + 1; x++)
{

fprintf(fptr,"\n nodes in layer %d = 'd",x,nodesinlayer(xJ);
fprintf(fptr," transfer function = %d",transfer..unction[x));
fprintf(fptr," training rule = %d",training.ruleExJ);

I
fprintf(fptr,"\n sigma rule = %d",sigma.rule);
for x = 0; x < total.nodes; x++)
{
fprintf(fptr,"\n\n node %d receives input from the following nodes\n",x);
for (y = 0; y < total-nodes; y++)
{

if (node.record[xJ->connect[yJ == 1)
fprintf(fptr,"d ",y);
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}
}

/* Function Name: file.error-data lumber: 6.28 */
/* Description: This function files the total number ofch */
/* errrors, the percentage correct, and the record */
/* misclassified */

/* */

/* Functions Called: None */
/* Variables Passed In: class.error - Integer */
/* per.cent.correct - Float
/* misclassifter - Integer Array */
/* *fptr - File pointer
/* *

/* Variables Returned: None */
/* Date: 11 Nov 90 Revision: 1.0 */

void fileerror.data(int class.error,

float per.cent.correct,

int misclassified[l,

FILE *fptr){
int x;

fprintf(fptr,"\n total errors = %d",class-error);
fprintf(fptr,"\n per cent correct = %f",per.cent.correct);
for (x = 0; x < class.error; x++)

fprintf(fptr,"\n record %d misclassified ,misclassified[xl);}

/* Function Name: file-class-count Number: 6.28 */
/* Description: This function files the number of training

1* patterns from each class
/* *

/* Functions Called: None */
/* Variables Passed In: training-patternsinclass - Integer array */

/* classes - Integer
*fptr - File pointer1* *

/* Variables Returned: None

/* Date: 11 Nov 90 Revision: 1.0 */
*************** ****************************************************

void file-class-count (int training.patterns.in.class[],
int classes,

FILE *fptr)

int x;

for (x = 1; x < classes +1; x++)

fprintf(fptr,"\n records in class %d = %d",x, trainingpatterns-in.classfx3);
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G.7 NETOUT

/* Module Name: NETOUT.C Number: 7.0 e/
/* Description: This module contains the functions which */
/, calculate the output for each node in the network */

due to a given input pattern */
/* */

/* Modules Called: None */
/* Functions Contained: 7.1 calculate.feed.forward.networkoutput */
/c 7.2 calculatelayer.Ooutput C/

/c 7.3 calculatelayer..output */
/c 7.4 calculate-layer_2_output

/c 7.5 calculato.layer.3.output
/c 7.6 calculate.node.output Cl
/c 7.7 calculate.output.as-input c/

7.8 calculatelinearoutput c/
/c 7.9 calculate.rbf-output */

7.10 calculatesigmoid.output

/* Date: 11 Nov 90 Revision: 1.0

*include'netvrble.h"
#include"netfnctn.h"

/e $cc$c**eeeccceccccceecescce*CC$ecceecce$ceeeec$se$$€$ecccceecc$cc/

/* Function Name: calculatefeedforward.networkoutput Number:7.1*/
/* Description: This function calculates the output of a feed c/

forward network due to an input pattern

/* Functions Called: 7.2 calculate.layer..output

/c 7.3 calculateolayer..output
/c 7.4 calculate-layer.2_output C,

7.5 calculate-layer.3_output C/

/* *

/* Variables Passed In: training or test.data - Structure array c/

/c Node.record - Structure array
/c number-of.layers - Integer c/

nodes.in-layer - Integer array
/*c*

/* Variables Returned: Node-record - Structure array

/* Date: 11 Nov 90 Revision: 1.0 c/

void calculate.feedforardnetwork.output (struct data *data-recordO,
struct Node-data *noderecordD,

int number.oflayers,

int nodes.inlayerO,
int startingnodein.layer[],

int record,
int total-nodes)

int layer;

for (layer = 0; layer < number.of-layers + 1; layer++)
{
switch (layer)
{

case 0:

calculate.layer. output(data-record,
node.record,

nodesin.layer,
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record);
break;

case 1:
calculate.layer..output(data.record,

node.record,
nodes.-inlayer,
starting.node.in.layer,
total.nodes);

break;

case 2:
calculate.layer_2_output(data.record,

node.record,
nodes.in.layer,
starting.nodein.layer,
total-nodes);

break;

case 3:
calculate.layer_3_output(data.record,

node.record,
nodes-in-layer,
startin-node.in.layer,
total-nodes);

break;

default:
printf("\nerror");

}

1* Function Name: calculatelayer.Ooutput Number: 7.2 *1
/* Description: This function calculates the output for each node */
/* in layer 0 of a feed forward network

/* Functions Called: 7.6 calculate.node.output
/* Variables Passed In: training or test-data - Structure array e/

Node.record - Structure array

1* nodes.inlayer - Integer array */
-1* record - Integer */
/* *

/* Variables Returned: Node.record - Structure array
/* Date: 11 Nov 90 Revision: 1.0

void calculatelayerOoutput (struct data *data.record[,
struct Node.data *node.record[j,

int nodes.inlayer[],
int record)

int nodeO;
for (nodeO = 0; nodeO 4 nodes.in-layer[0; nodeO++)

calculatenode.output (data.record,
node.record,
nodeO,
record);
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/* Function Name: calculate.layer-..output Number: 7.3 */
/* Description: This function calculates the output for each node */

in layer I of a feed forward network */
/* */

/* Functions Called: 7.6 calculatenode.output */
/* Variables Passed In: training or test.data - Structure array */
/* Node.record - Structure array
/* nodesin.layer - Integer array */
/* starting.nodein.layer - Integer array */
/* total-nodes - Integer */
/* */

/* Variables Returned: Node-record - Structure array */
/* Date: 11 Nov 90 Revision: 1.0 */

void calculatelayer1-output (struct data *data.record[],
struct Node.data *node-record[,
int nodes.in.layer[O,
int starting.node.layerO,
int total.nodes)

int nodel,current.node;
for (nodel = 0; nodel < nodes.in.layer[1]; nodel++)
{

current.node = starting.node.layer[i + nodel;
calculate.node.output (data-record,

node-record,
current.node,
total-nodes);I

/* Function Name: calculate.layer.2.output Number: 7.4 */
/* Description: This function calculates the output for each node */

in layer 2 of a feed forward network */

/* Functions Called: 7.6 calculatenode.output 5/

/* Variables Passed In: training or test.data - Structure array */
Node.record - Structure array */

/5 nodesin.layer - Integer array
/* startingnodein.layer - Integer array e/
/* total-nodes - Integer */

/* */

/* Variables Returned: Node.record - Structure array 5/

/* Date: 11 Nov 90 Revision: 1.0
**e*sesesseessessssesssssesesssessssesesessesssessessssse*ssesesessss/

void calculatelayer.2.output (struct data *data.record[],
struct Node-data *node.record[],
int nodes.in.layer[J,
int startingnode.layerO,
int total-nodes)

int node2, current.node;
for (node2 = 0; node2 < nodes.in.layer[2J; node2++)
{

current.node = startingnodelayer([2) + node2;
calculate.node.output (data-record,

node.record,
current.node,
total-nodes);

}
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/* Function lame: calculate.layer_3.output Number: 7.5 */
/* Description: This lunction calculates the output for each node */
/* in layer 3 of a feed forward network */
/s *

/* Functions Called: 7.6 calculatenode.output
/* Variables Passed In: training or test.data - Structure array */
/* Node-record - Structure array */
/* nodes.in.layer - Integer array
/* starting.node-in.layer - Integer array */

total.nodes - Integer

/* Variables Returned: Node-record - Structure array */
/* Date: 11 Nov 90 Revision: 1.0

void calculate.layer.3.output (struct data *data.record[],
struct Node.data *noderecord[],
int nodes.in.layer[],
int starting.node.layerO,
int total.nodes)

int node3, current.node;
for (node3 = 0; node3 < nodes.in.layer[3]; node3++)
{

current.node = starting.node.layer[3] + node3;
calculate.nodeoutput (data-record,

node-record,
current-node,
total.nodes);

/* Function Name: calculate.nodeoutput Number: 7.6*
/* Description: This function calculates the output for a single */
/* node in a network by testing the transfer */
/f~function and sending control to the appropriate */
*~ function */

/5 ,/

/* Functions Called: 7.7 calculateoutputas.input */

7.8 calculate-linear-output
7.9 calculaterbf.output

/* 7.10 calculatesigmoid.output */

/, Variables Passed In: training or test-data - Structure array */
/* Node-record - Structure array

current.node - Integer array */
total.nodes - Integer */

/s ,

/s Variables Returned: Node-record - Structure array
/* Date: 11 Nov 90 Revision: 1.0
/s*Sss**s*sssssss*sss*sss44sss*ssss*ssss*ssss**sssssssssss********/

void calculate-nodeoutput(struct data *datarecord[l,
struct Node.data *node.record[I,
int current.node,
int total-nodes)
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switch (node.record[current.node]->transfer.function)
{

case 0:
calculateoutput.asinput (data.record,

node.record,
current-node,
total.nodes);

break;

case 1
calculate.sigmoid.output(node-record,

current.node,
total.nodes);

break;

case 2 :
calculate.rbf.output(node.record,

current-node,
total-nodes);

break;

case 3 :
calculate.liear.output(node.record,

current-node,
total.nodes);

break;
default:

break;
}

}

/* Function Name: calculateoutput.asinput Number: 7.7 */
/* Description: This function calculates the output for node */
/* with the identity transfer function as */

y(out) = x(in) a,
/* */

/* Functions Called: None
/* Variables Passed In: training or test.data - Structure array */

Node-record - Structure array *1
current.node - Integer */

/* record - Integer
/* */

/* Variables Returned: Node-record - Structure array */
/* Date: 11 Nov 90 Revision: 1.0 */

void calculate.outputas-input(struct data *data-record[I,
struct Node-data *n-recordO,
int node,
int record)

{
n_record~node]->output = data-record[record]->vector[nodeJ;
n.record~node]->class data.record[record]->class;}

/* Function Name: calculate.linear-output Number: 7.8
/* Description: This function calculates the output for node
/s with the linear transfer function as
/* y(l) = sumw(kl)x(k)] /
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/* */
/* Functiona Called: lone
/* Variables Passed In: lode-record - Structure array 5/

/s current.node - Integer 5/

/5 total.nodes - Integer 5/
/* */

/* Variables Returned: Node-record - Structure array 5/

/* Date: 11 Nov 90 Revision: 1.0 s/
*********************************************************************

void calculate.linear.output(struct Node.data *node-record[],

int current.node,

int total-nodes)

int node;
node.record[currentnode]->output = 0;

for(node = 0; node < totalnodes; node++)
{

noderecordfcurrent.node]->output = node-record[current.node]->output
+ node.record[current.node]->weght[node]
* node.record[node]->output
* node.record[current.nodeJ->connect [nodeJ;

}
}

/* Function Name: calculate..bf-output Number: 7.9 5/

/* Description: This function calculates the output for node s/
/5 with the linear transfer function as 5/

/s y(l) = exp(-[1/2]sum{[x(k)-(kl)]J2/-2 */

/* Functions Called: None 5/

/* Variables Passed In: lode.record - Structure array

/s current-node - Integer 5/

/s total.nodes - Integer
* */

/* Variables Returned: Noderecord - Structure array 5/

/* Date: 11 Nov 90 Revision: 1.0

void calculaterbf-.output(struct lode-data *noderecord[],

int current-node,

int total.nodes)

double buffer =0;

double weight-offset = 0;

double x = 2.0;
int node;

for (node = 0; node < total.nodes; node++)
{

if (node.record[currentnode]->connect [node] != 0)
{

weight-offset = (node.record[current-node]->weight[nodej-

node.record[node]->output);

buffer = buffer

+ pow((weight.offset/noderecord[currentnode]->sigma[nodeJ),x);

noderecord[current.node]->output exp(-(double)(buffer/2));
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/* Function Name: calculatesigmoid.output Number: 7.10 */
/* Description: This function calculates the output for node */
Is with the sigmoidal transfer function as 5/

is y(l) = 1/{1+exp[-sum[(kl)x(k)]+Q)} *1

/, Functions Called: None
/* Variables Passed In: Node.record - Structure array s/
/s current.node - Integer 5/

/5 total.nodes - Integer */

/* Variables Returned: Node.record - Structure array 5/

/* Date: 11 Noy 90 Revision: 1.0

void calculate.sigmoid.output(struct Node.data *node.recordo,
int current.node,
int total-nodes)

double buffer = 0;
int node;
for (node = 0; node < total.nodes; node++)
{

if (node.record[current.node]->connect[node] != 0)
buffer = buffer + noderecord[currentnodeJ->weight[node)

c node.record node->output;
}
buffer = buffer + node.record[current.node]->sigma[currentnode;
node.record[current.node]->output = 1/(1 + exp(-buffer));

G.8 NE TA UX

/* Module Name: NETAUX Number: 8.0
/* Description: This module contains the training functions called 5/

/s by NETTRAIN */
/*c*

/* Modules Called: None */

/* Functions Contained: 8.1 determine Y matrix */
8.2 determine S matrix 5/

/5 8.3 determine M matrix 5/

8.4 calculate weight matrix
/* 8.5 MSE.last.layer
/* 8.6 MSE.last.layer.linear
/* 8.7 MSE.last.layer.sigmoid */

8.8 MSE.mid.layer 5/

8.9 MSE.lst-layer
/c 8.10 calculateerrors.in.output 5/

/c 8.11 get.linear-training.eta
/* 8.12 get.kobonen.neighborhood

8.13 calc.dist.outputsto-nxt.lyr
8.14 findnearest-element

/5 8.15 findkohonen.boundaries
is 8.i6 dotermineneighborhoodelements */
/5 8.17 train.kohonen.weights
/* 8.18 find.distonce-between-nodes
/s 8.19 sort_2.dim.array

8.20 CElastlayer
/s 8.21 CE.mid.layer

8.22 CE.first.layer 4/
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/C 8.23 calculatezn C/

8.24 CFN.last.layer */
/c 8.25 CF)Lmid.layer

/* 8.26 find.second.highestnode
/* 8.27 CFN.first.layer

8.28 find.nearest.neighbor */
/* */

/* Date: 10 Noy 90 Revislon: 1.0 */

*Include "netvrble.h"

#include "netfnctn.h"

/********************************************************************

/* Function Name: determine.Y-matrix Number:8.1 */
/* Description: This function calculates the outputs for each e/

/c node in a given layer and stores these outputs in */
/e a matrix. Each row will represent the outputs for */
/C that layer due to an input pattern "I
/* Functions Called: calculate-layer_.output */
/* calculate-layer-.loutput C,

/. calculate-layer.2_output */
/c calculate.layer.3.output */

/* Variables Passed In: Node.record - Structure array ,/
Ic training-data - Structure array */

train.set - integer *1
/s nodes-in-layer - integer array */

/, startin.node-in.layer - integer array 5/

total-nodes - integer Cl

*Y - float array pointer

/c current-layer - integer ./

1* Variables Returned: *Y - float array pointer

/* Date: 10 Nov 90 Revision:1.0
/c**C**ccc******CcC**************Cc******c******c*****/

void determine.Y.matrix(struct Node-data *N.record[],

struct data *data.recordD,
int record.no,
int nodes.in-layer[l,

int starting-node-in.layer[J,

int total-nodes,
float *Y[],
int current.layer)

int row, column, current-node;
for (row = 0; row < record.no; row++)
{

switch(current-layer)

case 1:

calculate-layer.-Ooutput(data.record,

N-record,

nodes.in.layer,

row);
break;

case 2:

calculate-layer.output(data.record,
N.record,
nodes-in-layer,

row);
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calculate.layer..loutput(data.record,
I.record,
nodes.in.layer,
starting.-node.in.layer,
total.nodes);

break;

case 3:
calculate.layer.Ooutpult(data.record,

Nrecord,
nodes-in.layer,
row);

calculate.layer-l.output(data.record,
N.record,
nodes-in.layer,
starting.node.in.layer,
total-nodes);

calculate.layer.2.output(data.record,
Nrecord,
nodes-in.layer,
startingnodein.layer,
total-nodes);

default:
break;

}

for (column = 0; column < nodes..in_layer[currentlayer-1]; column++)
{

current.node = starting.node.in-layer[current.layer - 1] + column;
*((Y[row))+column) = N.record[current-node]->output;

}

/* Function Name: determine.S.matrix Number: 8.2
/* Description: This function sets the desired outputs for the */

last layer to a I for the node responsible for the */
/* class and 0 for the remaining nodes

/* Functions Called: None
/* Variables Passed In: training.data - Structure array

train.set - Integer
/* nodes.in.layer - Integer array
/**S - Float array pointer

current.layer - integer

/* Variables Returned: *S array */
/* Date: 10 Nov 90 Revision: 1.0 */

void determine.S.matrix(struct data *datarecordfl,
int record.no,
int nodesinlayer[I,
float *S[],
int current.layer)

int row, column;
for (row = 0; row < record.no; row ++)
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for (column = 0; column < nodes.in.layer[current.layer]; column++)
*((SCrow])+column) = 0;
for (row = 0; row < record.no; row ++)
{

column = data.record[row]->class;
((S[row])+column-1) - 1;

}

/* Function Name: determine.X-matrix lumber: 8.3 5/
/* Description: This function determines the cross products of the 5/
/, outputs from all the nodes in a given layer with a */
I, specific node in that layer
/5 X(IB) - sum~y(pl)y(pB)] 5/

/* Functions Called: None
/* Variables Passed In: *Y - Float array pointer
/5 M* - Float array pointer

nodesin-layer - Integer array 5/

/s train-set - Integer 5/

/s current.layer - Integer 5/

/* Variables Returned: *M - Float array pointer */
/s Date: 10 Nov 90 Revision: 1.0 5/

void determine.Mmatrix(float *Y[],
float *ME],
int nodes.in.layer[],
int patterns,
int current.layer)

int row, column, p;
for (row = 0; row < nodes.in.layer[currentlayer-1J; row++)

for (column = 0; column < nodes. in.layer[current.layer-1]; column++)
{

*((M[row])+colmn) = 0;
for (p = 0; p < patterns; p++)

*((M[rowJ)+column) = *((Y[p])+row) * *((YCp])+column) + *((MErov])+column);}

/**5*5****55*****5*5*5*5**********55*****5555*555555555/***

/* Function Name: calculateweight.matrix Number: 8.4 */
/* Description: This function calculates the output layer weights 5/

/s by w(BD) = sumfsum~y(pl)d(pD)JN(Bl)}
/* Functions Called: None 5/
/* Variables Passed In: Node-record - Structure array
/s *W - float array pointer 5/

* - float array pointer
* - float array pointer
*S - float array pointer 5/

/s nodes.in-layer - Integer array
/5 starting-node-in-layer - Integer array */
/s train-set - Integer

current.layer - Integer
/* *

/* Vuriables Returned: 4W - flodL array pointer 4/

/* Date: 10 Nov 90 Revision: 1.0
*********************************************************************

void calculate.weight-matrix(struct Node-data *].record[3,
float *E],
float *13,
float *Y[J,
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float *S[],
int nodes.in.layerO,
int starting.node.in.layer[,
int patterns,
int current.layer)

float sum= 0;
int row, column,P, L, current.node, previous.layer.node;
for (row = 0; row < nodes.in.layer[current. layer-1]; row++)
{

previouslayer-node = starting-node.in.layer[current.layer-1] + row;
for (columnr 0; column < nodes-in.layer[current.layer]; column++)
{

*((WrowJ)+column) = 0;
for (L 0; L < nodes.in-layer[current.layer-1]; L++)
{

sum = 0;
for (P = 0; P < patterns; P++)

sum sum + *((Y[P])+L) * *((S[P])+column);
*((W[row])+column) = *((W[row])+column) + *((N[row])+L) * sum;

}
current.node = starting.node.in.layer[ecurrent-layer] + column;
N-record[current.node->weight~previous.layer.nodeJ = *((W[rowJ)+column);

I
}

/** End Functions Called by Optimize Weights by Matrix ***/

/* Function Name: XSE.last.layer Number: 8.5 */
/* Description: The function determines wether to backpropate the *f
/* parameter by the sigmoidal or linear update */
/* equations */

/* Functions Called: 8.6 MSE.last.layerlinear

/* 8.7 MSE.last.layer-sigmoid */
/* *

/* Variables Passed In: Node.record - Structure array
I* desired-output - Float array

nodes.in.layer - Integer array
/* starting-node.-inlayer - Integer array */
/* last-layer - Integer */
/* MSE.eta - Float
/* MSE.epsilon - Float
/* *wght - Float array pointer */
/* MSE-momentem - Float */
/* */
/* Variables Returned: Node.record - Structure array '/
/* Date: 10 Nov 90 Revision: 1.0 */

void MSE.last.layer(struct Node.data *node.record[3,
float desired.output[I,
int nodesin.layer[l,
int starting.node.in.layer[],
int last-layer,
float eta,
float epsilon,
float *wght[],
float alpha){

int x, y, last.layer.node, previous.layernode;
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for (x = 0; x < nodes.in.layer[last.layerl; x++)
{

last-layer.node = starting.node.in..layer[last.layer+x;
switch (node.record[last-layer-node3->transfer.function)
{

case 1:
MSElast.layersigmoid(node.record,

desired-output,
nodes.in.layer,
starting.node.in.layer,

last-layer,
last.layer.node,
eta,
ught,
alpha);

break;
case 2:

/* reserved for rbf */
printfQ\n error, improper transfer function");

break;
case 3:

MSE.lastlayer-linear(node-record,
desired-output,
nodes.in.layer,
starting.node-in-layer,
last.layer,
last.layer_node,
eta,
wght,
alpha);

break;
default:

break;
}

}

ra Function Name: MSE.last.layer-linear Number: 8.6 */
/* Description: This function implements the following update rule */

for a node forming a linear combination of the */
1* outputs from the previous layer: */

w+ = w- + eta * (d-z)ey /
Q+ = 0- + eta * (d-z) C,

/* where w+ - next weight */
/* eta - training factor (.01 - .99) */
/* d - desired output */
/C z - actual output of the last layer node */
1* y - actual output of the node in the previous layer
/e - the sigma (theta) for that node

/* Functions Called: None */
'* Variables Passed In: Node.record - Structure Array

desired-output - Float array
nodes.in.layer - Integer array C,

'* starting.node.in.layer - Integer array */
number.of.layers - Integer
total-nodes - Integer

MSE.eta - Float
, *wght - Float array pointer */

MSE-momentum - Float

/* Variables Returned: Node.record - Structure Array
/* Date: 10 Nov 90 Revision: 1.0
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void MSElast.layerlinear(struct Node-.data *node-.record[],
float desired.output [3,
int nodes..in.layerl,
int starting.node-.in..layerEJ,
int last-.layer,
int last.layer.node,
:float eta,

float *vghtO,
float alpha)

float delta-.., old-ught;
int y, previous.layer-.node;
int x = 0;

x last-.layer.node - starting-.node..inlayer~last-layer);
delta-.1 = desired..output Er) - node..recordlast..layer-nodeJ-)output;
for (y = 0; y < nodes.-.in...ay er last-.layer-1] ; y++)

previous.layer-node = starting.node-.in..layerlast..layer-iJ+y;
old..wght = *((wght~last.layer.nodeJ)+previous..layer..node);
* ((wght (last.layer-nodej )+previous-.layer-.node)

node..record [last.layer.nodej ->weight [previ'ous..layer.node];

node..xecordtlast-.layer.node]->weight[previous.layer-nodeI
node..record~last.layer-node) ->weight (previous-layer-nodeJ
" eta * delta..i * node-.record[previous-.layer..nodeJ->output
" alpha * (node..record Elast-.layer-.nodej ->weight [previous.layer-nodeJ

-old..wght);

old-.wght =*((wght~last-layer-nodeJ)+last-layer-node);
*((wght [last-.layer.node])+last.layer.node) =

node..recordlast..layernodeJ->sigma[last.layer.node];
node..record (last-.layer-.nodeJ->sigma~last.layer.nodeJ

node..record[last..layer.node]->sigma~last.layer-nodeI +
eta * delta.1

+ alpha *(node..record[last.layer.nodeJ->sigma~last.layer.node]

-old-.wght);

/* Function Name: MSE.last..layer..sigmoid Number: 8.7
/* Description: This function implements the update rule for a *

1* sigmoidal transfer function in the last layer: *
/* w+ =w- +eta *(d -z) * (-z) *z *y *
/* Q+ =0- +eta * (d -z) * (1-z)* z
/* whero

/* w - weight between node in last layer and previous layer *
/* 0 - sigma or theta of last layer node
/* eta - training coefficient *
/* d - desired output for the last layer node .

/* z - actual output for the last layer node
/* y - actual output for the previous layer node

/* Functions Called: None *
/* Variables Passed In: Node-.record - Structure Array

1* desired-.output - Float array
nods.iL.layor - Integer array 4
starting-.node..in..layer - Integer array *
current-.layer - Integer

1* current-.node - Integer
MSE..ta - Float
*wght - Float array pointer
MSE..momentum - Float *
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1* Variables Returned: Node-.record - Structure Array
/* Date: 10 Nov 90 Revision: 1.0 *

void-MSE.last..layer..sigmoid(struct Node-.data *node-.recordO3,
float desired..output[),
int nodes.in-layerDl,
int starting.node-n-.layerE],
int current-.layer,
int current-.node,
float eta,
float *wghtEJ,
float alpha)

float delta.1, delta.2, old..wght;
mnt y, previous.layer..node, x;

x = current-.node - starting.node.in-.layer~current..layerJ;
delta-.i = desired..output Er]-node-.record Ecurrent-nodeJ ->outpp.;
delta-.2 =(1-node..record[current-.nodeJ->output)

* node-.record~current-.nodej->output;
for (y = 0; y < nodes-i.n-.layer~current-.layer-1J; y++)

f
previous.layer-node =ssarting-.node..in..luyer~current-.layer-iJ + y
old-wght = * ((wght [current.node) )+previous..layer..node);
*((wght Ecurrent..node) )+previous.jryer..node) =

node..reccrd~current.nodeJ->wveight Eprevious..layer..node);

node..record [current-.nod e) ->weight Eprevious.layer-.nodeI
node..record [cuicrent..node) ->weight Eprevious..layer.nodeJ
+ eta * delza-I. * delta.2 * node-.record~previous-.layer.nodeJ->output
+ alpha * (node..record Ecurrent..nodeJ ->weight Eprevious-layer-node3

-old..wght);

old..wght =* C(wght Ecurrent..nodeJ )+current-node);
* ((wght Ecurrent-node) )+current..node) =

node-.record~current..nodeJ->sigmacurrent.nodeJ;
node..record~current.node->sigma~currei.t-nodeJ =

node-.record~current..nodeJ->sigma~current.nodeJ +
eta * delta-j * delta..2
+ alpha *(node..record~current-nodeJ->sigma~current-iiodeI

-old..wght);

/* Function Name: MSE..mid.layer Number: 8.8 *
1* Description: This function implements update rule for sigmoidal *
/* transfer function in the middle layer and last layer:
/* w',+ =w~- + eta * sum(d -z)* w) * (1.z) *z *y * (1-y) x

/* Q+ = 0- + eta * sum(d - z) *w' * (1-z) * z *y *(1-y)

/* where
/* v - weight between node in last layer and previous layer *
/* 0 - sigma or theta of last layer node *
/* w)- weight linking node in layer 3 to node in layer 2 5

/* w)) - vaight linking node in layer 2 to node in layer 1I*
/* eta - training coefficient
/* d - desired output for the last layer node

/* z - actual output for the last layer node
/* y - actual output for the layer 2 node

/* - actual output for the layer 1 node *

/* Functions Called: None
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/* Variables Passed Into: Node-.record - Structure Array *
desired-.output - Float array
nodes.in..layer - Integer array
starting.node.in..layer - Integer array *

1* current-.layer - Integer *
MSE-.eta - Float *

1* suwght - Float array pointer *
MSE..momentum - Float *

/* Variables Returned: Node..record - Structure Array *
/* Date: 10 Nov 90 Revision: 1.0 *

void MSE..mid.layer(struct Node-data *node-.recordD],
float desired[]J,
int nodes-.in.layerO,
mnt starting..node-n-.layerDl,
int current-.layer,
float eta,
float *wght(J,
float alpha)

mnt z, last..layer-.node, y, previous..layer-node, current-.node;
mnt x;
float sum, delta-.1, delta.2, old..wght;
sum =0;

for (x =0; x < nodes-in-.layer~current.layer); x++)

sum = 0;
current-.node = starting-node-.in..layer[current-.layerj +x;
for (z =0; z < nodes-.in-layer~current-.layer+lJ; z++)

last-layer-node =startingnode.in-layer~current-layer+l) + z
del 'ta-1 = desired~z) - node..record (last-layer.node) ->output;
delta-.2 = (I - node-record~last-layer.nodeJ->output)

" node..record Elast..layer.node] ->output
" node..record [last-.layer.nodeJ ->veight Ecurrent..node];

sum =sum + delta-1 * delta-2;

delta-.1 =(I - node-.record~current-.node)->output)
*node-record [current-node) ->output;

for (y =0; y < nodes..in..layer[current..layer-1); y++)

previous-.layer-node =starting.node-.in-.layer~current-layer-1J + 7
old-..ght = *((wghtcurrentnode)+previous-layer.node);

* ((wght fcurrent.node] )+previous..layer.node) =
node-.record~curront.nodeJ->weight [previous..layer-.nodej;

node-.record~current..node3->veight~previous.layer.node =
node-.record[current-nodeJ ->weight fprevious.layer-nodeJ

+ eta * delta-A * sum * node-.record[previous..layer~nodej->output
+ alpha * (node..record (current..nodej ->weight [previous..layer-node)

-old-ught);

old-.wght =*((wghtfcurrentnode)-current-node);
* ( (ght Ecurrent-nodeJ )+current..node)=

node-.record Ecurrent..node) ->sigma~current-.nodeJ;
node-record(current-nodeJ ->sigma~current..nodo)

node-.record[current-.nodeJ->sigma (current.nodeJ +
eta * delta-.1 * sum
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+ alpha *(node-.record~current.node)->sigma~current-nodeJ

-old-ught);

/* Function Name: NSE-..st..layer Number: 8.9 *
/* Description: This function implements update rule for sigmoidal.*
/* transfer function in the first, middle layer and last layer: *
/* w))) = w)) + et~uadz*Iz*~u wy(-)v)**Ix *
/* C+ = 4- + eta * sum(d - z)*(1-z)*zcsum(wsy*(1-y)*w'')*x*(1-x)
/* where
/* w - weight between node in last layer and previous layer
/s 0 - sigma or theta of last layer node
/* wl- weight linking node in layer 3 to node in layer 2
/* w)) - weight linking node in layer 2 to node in layer 1I*
/* w) - weight linking node in layer 1 to node in layer 0 c
/c eta - training coefficient *
/c d - desired output for the last layer node c
/* z - actual output for the last layer node c
/c y - actual output for the layer 2 node
/* x - actual output for the layer 1 node
/* a - actual output for the layer 0 node

/c Variables Passed into: Node-.record - Structure Array
/c desired-output - Float array c
/c ~nodes-.in..layer - Integer array *

start ing.node.in-.layer - Integer array c
/c current-.layer - Integer

MSE..eta - Float *
/c cught - Float array pointer
1* NSE~jnomentum - Float

/* Variables Returned: Node..record - Structure Array *
/c Date: 10 Nov 00 Revision: 1.0

void MSEIst..layor(struct Node-.data *node..recordo,
float desired-.outputO0,
int nodes-.in.layerl,
mnt starting.node..in-.layorEJ.
mnt current-.layer,
float eta,
float *wght[],
float alpha)

mnt next-layer.node, last.layer-.node, y, z, previous.layer.node;
mnt current-.node, x;
float sum..1, sum..2, delta-.1, delta..2, delta-.3, delta..4;
float old..wght;
sum..1 = 0;

for (x = 0; x < nodes-.in..layer~current-.layerJ; X++)

sum..1 = 0;
current-.node = starting.node.in..layer~current.layerJ + x
for ( z =0; z < nodes-.in..layer~current-.layer+2]; z++)

last-layer-node = starting.node..in..layer Ecurrent..layer+2J + z
delta-j = desired..output EzJ-node..record~last.layer-node) ->output;
delta..2 =(1-node-.record[last.layer.node]->output)

* node..record (last.layer.nodeJ ->output;
sum-2 0;
for (y =0; y < nodes..in..layer~current..layer + 1J; y++)
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next..layer-node = starting-node-zin-.layer(current..layer + 1) + y
delta-3 = (1-node-.record~next..layer..nodej->output)

* node-record Enet..layer..node) ->output;
delta-4 = node..record~last.layer.node)->weight (nert.layer-nodeJ

* node-.record~nezt-.layer..nodej ->weight (current .. nodeJ;
sum-2 = suzt.2 + delta..3 * delta-.4;

I
sumj1 = sum..1 + delta-.1 * delta.2 * suzL2;

I
delta-.1 = (I - node-.record~current..node)->output)

* node..record Ecurrent.nodeJ ->output;
for (y = 0; y < nodes.inlayer[current..layer-1]; y++)

previous..layer.node = startingnode-.in-.layer~current..layer-1J + y
old-..ght = * C(ught Ecurrent.nodeJ )+previous-.layer-node);
* C(tight Ecurrent..nodej )+previous..layer-.node) =

node..record~current.node]->weight (previous..layer.nodeJ;
node..record (current.nodeJ ->weight Eprevious..layer.node) =

node..record~current-nodeJ->weight (previous..layer-nodeJ
+ eta *delta_.1 * sumj1 * node-.record~previous..layer.node)->output

+ alpha *(node-..ecord~current..node)->weight[previouslayer.node

-old-ught);

old-wght * C(tight [current..nodej )+current-.node);
* ((tight Ecurrent.nodeJ )+current.node) =

node-.record Ecurrent-.node] ->sigma~current-.nodeJ;

node..record~currentsodej->sigma[current.nodeJ
node..record~currentaiodej->sigma~current-nodeJ +
eta * deltaj1 * sum1
4 alpha *(node-.record[current..node)->sigma(current.nodeJ

-old...ght);

ft Function Nazee:calculate.errors.in..output Number: 8.10 *
ft Description: This function compares the output of each node in *

ft in the output layer with the desired output.
If the difference between the desired and the t

actual is greater than some delta, an error
is returned

/* Functions Called: None
/* Variables Passed In: Node..record - Structure Array

/t desired-.output - Float array *
/t nodes-nlayer - Integer array

starting.node.in-.layer - Integer array *
/t number.of-.layers - Integer
/t terror - Integer pointer
/t epsilon - Float

/* Variables Returned: terror - Integer pointer
/* Date: 10 Nov 90 Revision: 1.0

void calculate-.errors.insoutput(struct Node-.data *node..record(],
float desired-.output[],
int nodes-.in..layerOl,
int starting.node.in..layerEJ,
mnt number.of..layers,

int terror,
float epsilon)

mnt x, last-layer-node;
for (r = 0; x < nodes-.in.layer[number..of..layers); x++)
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last.layernode = starting-node.in-layer[number.of.layers+x;
if (tabs(desired.output[x-node.record[last.layer.node->output) > epsilon){
*error = *error + 1;
x = nodes.in.layer[number.of.layers];

}

/*****tEnd functions called by bac.kprp remaining lyrs *****/

/* The following functions called by train via kohonen c/
**cc*c**c*cc*cccc*ccc****cccc*ccccc*cc*cc*c/***

/*ccccccccccc*ccc*ccccccccccccccccccccccccccccccc*cccccccccccc/***
/c Function Name: get.linear-training.eta Number: 8.11
/* Description: This function determinse the training eta by */
/, n = {n(max)/[i(o)-i(max)]}(i-i(o)]+n(ma) */
/* Functions Called: None */

1* Variables Passed In: trainvidth - Integer array */
train-scale - Float array */

/* iterations - Integer */
*eta - Float pointer *1
width.no - Integer */

/, */'

/* Variables Returned: *eta - Float pointer */
/* Date: 10 Nov 90 Revision: 1.0 */
/ cccc*cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc/

void get.linear.training.eta (nt train.width[],
float train.scale[],
int iterations,
float *eta,
int width-no)

int n, x;
n = 0;
for (x = 1; x < width.no; x++)
if (iterations > train.idth[x])
n =x;

*eta = (train.scale[n)/(trainsidthEn] - train.sidth[n+iJ))
* (iterations - trainvidth[n]) + trainscale[hn;

**ccc*ct*cccccccc****c**cc*c*ccccc*cccccccccccccccccccccc*/**

/* Function Name: get.kohonen.neighborhood Number: 8.12 */
/* Description: This function provide the neighborhood used in */
/' the update of the nodes */

/* Functions Called: None */
/* Variables Passed In: train-width - Integer array */
/* iterations - Integer */

neighborhoods - Integer array */
/c width.no - Integer

*neighbor - Integer pointer */
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/* Variables Returned: *neighbor - Integer pointer
/* Date: 10 Nov 90 Revision: 1.0*****4*** * ***4*4****** ** * ***4* ***44* ***** *** * *

voi get.kohonen.neighborhood (nt train.width[N,
int iterations,
int neighborhoods[],
int width.no,
int *neighbor)

{
int n, x;
n = 0;
for (x = 1; x < width.no; x++)

if (iterations > train.widthUx))
n=x;

*neighbor = neighborhoods[n];

/* Function Name: calc.dist-outputs.to.nxt-lyr Number:8.13 */
/* Description: This function finds the euclidean distance between */
/4 the outputs of one layer and the weights of the */
/* next layer

d(ij) = sqrt{sum[yi)-.(j)32}*
/* Functions Called: None
/* Variables Passed In: Node-record - Structure array
/4 nodes-in.layer - Integer array

starting.node.in.layer - Integer array */
/4 current-layer - Integer 4/

/4 distance - Float array 4/

/* Variables Returned: distance - Float array
/* Date: 10 Nov 90 Revision: 1.0

void calc.distoutputs.to.nxt.lyr(struct Node-data *node.record[N,
int nodes.in-layer[J,
int starting.node.in.layer[J,
int current-layer,
float distance[)

int x, y, current-node, previous.layer.node;
double buffer;
double exponent.1 = 2;
for (x = 0; x < nodes.in.layer[current.layerj; x++)
{

current-node = starting.node.in.layer[currentlayer] + x;
buffer = 0;
distance[x] = 0;
for ( y = 0; y < nodes.in.layer[current.layer-1J; y++)
{

previous.layer.node = startingnode.inlayer[current.layer-1] + y;
buffer f node.record[current.node]->eight[previous.layernodeI

- node.record[previous.layernode]->output;
distance[x] = distance[x] + pov(buffer,exponent.1);

I

/********************************************4**44*************
/* Function Name: findnearestelement Number: 8.14 */
/* Description: This function finds the node in the kohonen layer */
/* nearest to the input pattern 4/

/* Functions Called: None
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/* Variables Passed In: min - Float array */

/* array.max - Integer
*nearest-element - Integer pointer */

/* Variables Returned: *nearest.element - Integer pointer 5/
/s */

/* Date: 10 Nov 90 Revision: 1.0 */
/*********s*5555*****555s55555**5***55******5*55**/*

void find.nearest-element(float min[,
int array-max,
int *nearest-element)

int x;
float temp = 1000;
*nearest-element = 0;

for (x = 0; x < array-max; x++)
if (temp > min[x])
{

temp = min~x];
*nearest.element = x;

}

/**5*************5555555****55s5*****555555s*********/*

/* Function Name: find.kononen.boundaries Number: 8.15 e/
/* Description: This function finds the valid boundaries of the 5/

rectangular kohonen layer. Theses boundaries are */
centered at the winning node in the network 5/

/* Functions Called: None */
/* Variables Passed In: winner-node - Integer */
/s stsrting.node.in.layer - Integer array */

current.layer - Integer s/
nodes.x - Integer 5/

nodes.y - Integer 5/

neighbors - Integer si
/s *boundary.left - Integer pointer

*boundary-right - Integer pointer
*boundary-up - Integer pointer

/s *boundary.down - Integer pointer
/* */

/* Variables Returned: *boundary.left - Integer pointer
*boundaryright - Integer pointer 5/

/s *boundary.up - Integer pointer 5/

*boundary-down - Integer pointer
/* */

/* Date: 10 Nov 90 Revision: 1.0 5/
/5****************5***************5***********

void findkohonen.boundaries (nt winner.node,
int startingnode.inlayer[l,
int current-layer,
nt nodes.x,
nt nodes.y,
int neighbors,
int *boundary.left,
int *boundary.right,
int *boundary.up,
int *boundarydown)

int neighborsx, neighbors.y, winnernode.y, winner.noder;
neighbors-x = neighbors - 1;
neighbors.y = neighbors - 1;
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winner.node.y = (winner.node-startingnode.in.layer[current.layer])
/nodes.x;

winner.nodo.x = (winner.node-starting.node.in.layer [current -layer])
- uinner.node-y * nodes.x;

*boundary.left - winner.node.x - neighbors.x/2;
*boundary-right - winner.node-x + neighbors.x/2;
*boundary.up = winner.node.y + neighbors.y/2;
•boundary.down = winner-node.y - neighbors.y/2;

if (*boundary.left < 0)
*boundary.left = 0;

if (*boundary.right > nodes.x - 1)
•boundary-right = nodes.x - 1;

if (*boundary.up > nodes.y - 1)
*boundary.up = nodes-y - 1;

if (*boundary.down < 0)
*boundiry.down = 0;

/* Function Name: determine-neighborhood.elements Number: 8.16 */
/* Description: This function returns the node numbers of the */

nodes whose weights will be updated

/* Functions Called: None ,/
/* Variables Passed In: boundary-left - Integer
/* boundary.right - Integer
/s boundary.up - Integer
/* boundary.down - Integer

*nodes-to.update - Integer pointer */
/s update-node - Integer array
1* starting.node.in-layer - Integer array s/
/* nodes.x - Integer */

current.layer - Integer

1* Variables Returned: *nodes.to.update - Integer pointer
/* update.node - Integer array

/* Date: 10 Nov 90 Revision: 1.0

void determine.neighborhood.elements (nt boundary.left,
int boundary.right,
int boundary-up,
int boundary-down,
int *nodes-to.update,
int update-node[],
int starting.nodein.layer[,
int nodes.x,
int current-layer)

int x, y, z;
z = 0;
for (y = boundary.down; y < botvdary.up + 1; y++)
for x boundary.left; x - -,dary.right + 1; x++)

update-node[z] = x + nodesx * +
startingnode.in.layer(current.layer];

z = z + 1;

*nodesto.update = z;
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}

/* Function Name: train-kohonen.eights lumber: 8.17 */
/* Description: This function updates the winning node and the */
/* neighborhood nodes by the equation 5/

w(+) - w(-)- + nEx-w(-)] */

/* Functions Called: None */
/* Variables Passed In: Node.record - Structure array sI

nodes-.inlayer - Integer array
/* starting.node.in-layer - Integer array 5/

/* current-layer - Integer array */
/* nodes.to-update - Integer 5/

/* update.node - Inttger array 5/

/s eta - Float 5/
/* */

/* Variables Returned: Node-record - Structure array 5/

/* Date: 10 Nov 90 Revision: 1.0 */
/5*5 ** 5 ****** * * 5 *555 5 * 5***5*5* 5 *5 5*55555 5 ** /

void train.kohonen..eights(struct Node-data *node.record[],
int nodes.in.layerO,
int starting.nodei..layer[],
int current.layer.
int nodesto.update,
int update.node[],
float eta)

{
int x, y, current.node, previouslayer.node;
float buffer;
for (x = 0; x < nodes.to-update; x++)

current-node = updatenode x];
for (y = 0; y < nodes-.in.layer[current.layor-1); y++)

previous.layernode = startingnode.in.layer[current.layer-1 + y;
buffer = node.record[previous.layernodeJ->output -

node-record[current.node]->weight[previous.layernode];
node.record[current.node]->weight[previous.layer.node =

node.record[current.node]->weight[previous.layer.node]
+ eta * buffer;

}
}

}

/* End functions called by train vi kohonen */

*s******ss*************************************

/* The following functions are called by set sigma at s/
/* P neighbors avg. 5/

/* Function Name: find.distance-between.nodes Number:8.18 5/

/* Description: This function finds the euclidean distance between 5/

/* nodes in the same layer */
d(ij) = sqrt{sum[w(i)-w(j)32}/

/* Functions Called: None
/* Variables Passed In: Node.record - Structure array /

node._in.layer - Integer array */

starting.node.in.layer - Integer array */
/* current-node - Integer /
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/s next-node - Integer */
/e current.layer - Integer C/

/* *distance.between - Float array pointer */

/$ Variables Returned: *distance.between - pointer
/* Date: 10 Nov 90 Revision: 1.0 */

void find.distance.between.nodes(struct Node.data *noderecordO,
int nodes-in.layerD,
int starting.node.in.layerO,
int current.node,
int next.node,
int current.layer,
float *distance.between[])

int x, y. z, previouslayernode;
double distance, buffer;
double exponent1 = 2;
double exponent_2 = .5;
x = current-node - starting.node.in.layer[current.layer;
y = next-node - starting.node.in.layer[current.layerj;
buffer = 0;
for (z = 0; z < nodes.in.layer[current-layer-1]; z++)
{

previous-layernode = starting.nodein.layer[current.layer-1] + z;
distance = node.record[currentnode]->veight[previous.layernode]

- node.record[next.node]->seight previous.layer.node];
distance poe(distance,exponent.1);
buffer = buffer + distance;

I
$((distance.between[x])+y) = pow(buffer,exponent2);

/* Function Name: sort.2.dim.array Number: 8.19 */
/* Description: This function returns an array sorted in

descending order *I

/* Functions Called: lone
/* Variables Passed In: *M - Float array pointer */
I* array-max - Integer

row - Integer */

/* Variables Returned: *M - Float array pointer
/* Date: 10 Nov 90 Revision: 1.0
*********************************************************************

void sort.2_dim.array(float *MCI,
int array.max,

int row)

int y, z;
float temp;
for (y = 0; y < array.max; y++)
for (z = y; z < array-max; z++)
if r*r(meroVI))*=) < (eo=)y)

~{
temp *((M[rouJ)+y);
*((M[rowJ)+y) = *((M[row])+z);
*((M[rog])+z) = temp;
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1* End functions called by set sigma at P neighbor avg e

/* Functions Called by CE Remaining Layers *

/* Function lame: CE..last..iayer Numbor:8.20 e
/* Description: This function updates the last layer weights of *

/5 and offsets of a sigmoidal. network by 5
/s w(mn)+ - swan)- + n/(2.3N)[d(n)-y(n)Jy(m) 5

Q(n) = 0(n) - n/(2.31)[d(n)-y(n)J *

/* Functions Called: None
/e Variables Passed In: lode-.record - Structure array

nodes..in..layer - Integer array
/5 start ing.node.in..layer - Integer array e
/5 current-.layer - Integer *
/5 eaght - Float array
/5 CE-.eta - Float 5
Is CE-momentun - Float 5

desired - Float array

/* Variables Returned: Node..record - Structure array
/* Date: 10 Nov 90 Revision: 1.0

void CE.las t.-layer (struct Node-.data *node-.recordo,
int nodes.in-layerDl,
int starting-node.in-.layerOl,
mnt current-.layer,
float *wght[],
float eta,
float alpha,
float desired(J)

mnt x, y, last.lyr-node, mid..lyr..node;
float old..wght, buffer1;

for (x = 0; x < nodes-.in.layer~current-.layerJ; x++)

last.lyr,node starting.node-.in..layer~current..layerJ+x;
buffer.1 dosired~x) - node-.record~last-.lyr-.nodeJ->output;

fox (y 0: y < nodes..in..layer~current..layer-1J; y++)

mz~d..lyr.node =starting-node..in..layer~current-.layer-1) + y
old..wght = ((ught~last-.lyr.nodel)4iid..lyr-node);

node..record[last.lyr-nodeJ->ueight (mid..lyr..nodcJ;
nid,..record[last..lyr..nodeJ->seight Emid.lyr..nodeJ +=

eta * buffer.1 * node..record(mid-jlyr..node3->output
* alpha
* (node..record last..lyr.nodej ->veight Did..lyr-.nodeI

-old-.wght);

old..ught = * C Cght (last.lyr.node) )+last..lyr.nodo);
et(ught [last-.lyr.nodeJ )+last.lyr-node)=

node..record~last..lyr..nodeJ->sigma~last.lyr-nodeJ;
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node..record[last-.lyr-.node]->sigma~last-lyr-nodeJ 4=

eta * buffer.1
+ alpha
* (node..record~last.lyrnode->sigma~last.lyr-nodeJ

-old..wght);

/* Function Name: CE..mid..layer Number: 8.21 *
/* Description: This function updates the weights in tho middle *

1* layer of a sigmoidal network by *
/* w(LM)+ = w(LM)- + n/(2.3N)sum~d(n)-y(n)JO(Kn)y(M)E1-y(H)Jy(L) *
/* Q(LE)+ = (LM)- + nI/(2.3N)sum[d(n)-y(n)w(Hn)y(m)[l-y(N)J *

/* Functions Called: None *
1* Variables Passed In: Nodo..record - Structure array *

1* nodes..in..layer - Integer array *
1* start ing.node.in..layer - Integer array *
1* current-.layer - Integer *
1* *wght - Float array

CE..eta - Float *
CE..romentr. - Float *

1* desired - Float array *

/* Variables Returned: None
/* Date: 10 Nov 90 Revision: 1.0 *

void CE..mid.layer(struct Node-.data *nodo.recordl,
mnt nodes..in-.layer (3,
mnt starting.node-.in-.layer(J,
mnt current.-layer,
float *wghtoJ,
float eta,
float alpha,
float desired[))

mnt x, y, z, mid.lyr.node, first.lyr-.node, last.lyr.node;
float buffer-.1, buffer.2, old-.wght;
for (x 0; x < nodes.in.layer~current.layer]; x++)

mid..lyr.node =starting-node-.in-layer~current-.layerj+x;
buffer.I = (1-liode.record~mid-lyr-.nodeJ->output)

*node..record(mid.lyr-.node->output;

buffer-2 = 0;
for (y = 0; y < nodes-.in.layer[current-layer+1J; y++)

last..lyr-node = start ing-node.-in-layer [current -1ayer+1)I + y;
buffer-2 += (desired (y] -node-.record last..lyr.nodeJ ->output)

*node..rocord [last..lyr-node) ->weight (mid..lyr..node];

for (z = 0; z < nodes-..inlayr current -1 ayer-i13; z++)

first-.lyr-node starting-node.in.layer~current.layer-1 + z
old..wght =*((wghtfmidlyrnode)+first.lyr-node);
*(("~ghtE(nid-.lyr..node)) 4'"-t-"ynode) =

node-.record (iid..lyr-.node] ->weight Efirst.lyr-.node3;
node..record~mid-lyr-.nocele->weight (firstlyr.nodej 4=

eta * buffer.2 * buffer-.. * nodc..record~first-lyrnode->output
+ alpha
*(nodo..record~inid..lyr..node) ->weightEf irst-lyr-node) - old..wght);
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old..ght = * C(wght fmid..lyr.node) )+mid..lyr..node);
* ((ught (mid .. lyr..node] )+mi&.lyr..node)=

node..record~mid..lyr-.node]->sigma(mid-.lyr-.nodeJ;
node..record~mid..lyr-.nodej->sigma (mid-.lyr..node +=

eta * buffer.2 * buffer.1
* alpha
* (node -record [mid-lyr.nodeJ ->sigma [mid..lyr.node) old..wght);

/* Function Name: CE.first-.layer Number: 8.22 *
/* Description: This function updates the weights in tha first *

1* layer of a three layer sigmoidal network by *
/* w(XL)+ = w(KL)+n/(2.3N)sum[d(n)-y(n)]{sum~w(mn)y(m)(1-y(m)) *

1* w(Lm)y(L)(1-y(L)y(K))
1* w(XL)+ = w(KL)+n/(2.311)sum[d(n)-y(n)J(sum~w(an)y(m)(i-y(m)) C

/* Functions Called: None *
/* Variables Passed In: Node-.record - Structure array *

/* ~nodes-.in-.layer - Integer array *
/e n~tarting.node-.ir.-layer - Integer array *
1* current-.layer - Integer *
/e '*Wght - Float array
/* CE..eta - Float
/* CE..momentum - Float
/* desired - Float array *

/* Variables Returned: Node..record - Structure array C

/* Date: 10 Nov 90 Revision: 1.0 *

void CE..first-.layer(struct Node-.data *node-.record(J,
mnt nodes..in.layerfl,
mnt starting.node-.in-.layerE),
int current-.layer,
float *wght(J,
float eta,
float alpha,
float desiredOJ
int total-.nodes;

float old...ght, buffer-.1, buffer-2, output TOTALNODESJ;
int x, y, z, lost.lyr-.node, mid..lyr..node, first.lyr-.node, inpnt.lyr-.node;

for (,- 0; x < total..nodes; x++)
output Er)= (1-node..record(X3->output)

*z~ode.recordExJ->output;

f or (x = 0; x < nodes.in..layer~current.layer); x++)

fir~t.lyr-node = starcing-.node-in.layercurrent-layerJ + x
buffee-.1 =0;
loe (y= 0; y < nodes-in-lay- .- c-rent-.layer+2J; y++)

last-.lyr-.node =startig..nude-j.nlayercurrent.layer+2) + y
buffer.2 =0;
for Cz = 0; z < nodes..in.layrtcurrent..layer+1J; z++)

mid.lyv..node =starting.node~n.layorcurrent-laT. .+13+z;
buffer.2 += node..record (last-lyr-.nodeJ ->eeight (mid-.lyr..noe)

* output (mid-lyr-.nodeJ
* node-.record~mid.lyrnode->weight(first..lyr-nodeJ;
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buffer.1 4= buffer-2 *(desired EyJ-node.record~last.lyr.node]->output);

for (y = 0; y < nodes..in-layer~current..layer-1J; y++)

input.lyr-node = start ing-.node..in..layer Ccurrent-.layer-1) +y;
old-sght = *((vghttfirstlyr-nodel+input.lyr-node);
*( (ughtCf irst-.lyr..nodeJ )+inputjlyr.node) =

node-.recordtfirst-lyr-node) ->veight Einput-.lyr-.nodeJ;
node..record first.lyr.node) ->veight Cinput..lyr..nodeJ +=

eta * buffer.1 * output (first.lyr.node)
*nodt-record~input.lyr.node) ->output

+ alpha
*(node-.record~first..lyr.node] ->ueight input-.lyr-nodej

-old-wght);

old..wght * C(ight first..lyr.nodej )+first-.lyr.node);
*((vghtCf irst.lyr-node) )+first.lyrsnode)=

node..record[first-lyr-nodeJ ->sigma~first.lyr.node);

node..record~first..lyr..node]->sigma~first..lyr.nodej +=
eta * buffer-.i * outputCf irst.lyr-nodeJ
+ alpha * (node-.recordtfirst.lyr.node) ->sigma~first-lyr.nodej

-old-wght);

/*End Functions Called by CE Remaining Lyrs

/* Functions called by CFM Remaining Lyrs *

/* Furction Name: calculate.zn Number: 8.23
/* Description: This function calculates the CR1 signoid output *

for each of the incorrect nodes by
z(n) = 1/E1+expC-By(c)+By~n)+zota)J *

/* Functions Called: None
1* Variables Passed In: Ncde..record - Structure array

nodesjn.layer - Integer array
starting.node.in.layer - Integer array *
current-.layer - Integer

P correct-.node - Integer
zn - Float array
OFi-beta - Float

I. CFM-zata - Float *

/* Variables Returned: zn - Float array
/* Date: 10 Nov 90 Revision: 1.0 4

void calculate.zn (struct Node-.data *node-.record[J,
inn nodes..in-.layerOl,
mnt starting.node..in-.layerO ,
int current-.layer,
int correct-.node,
float zn[,
float beta,
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float zeta)

int x,: current..node;
double buffer = 0;
for Ux = 0; x < nodes-..in-.layer [current .. ayer); x++)

current-.node = start ing..node-.in..layer [current..layerj +x;
buffer = zeta - beta

* (node..xecord Ecorrect-.node] ->output
- node..record~current..node)->output);

zn~x] = i/(1+exp(buffer));

/* Function Name: CFl-last-.layer Number: 8.24
/* Description: This function updates the weights of the last *

/s layer of a sigmoidal network by
/s w(KN)+ = wOIN)-anB/(N-1)z(N)El-z(N))y(N)EI-y(N)y(M) *
/s (N+ = Q()-anB/(N-1)z(N) E1-z(N))y(N) E1-y(N)J
/s w(KC)+ = w(mc)-anB/(N-l)sum~z(N) (1-z(N)J }y(C) (1-y(C)Jy(M) *
/* (c+ = Q(C)-anB/CN-1)sum~z(N) (1-z(N)JIly(C) E1-y(C)J

/* Functions Called: None
/* Variables Passed In: Node-.record - Str-cture array

/s nodes..in-.layer - Integer array
/s start ing-node.in.layer - Integer array *
/5 last-.layer - Integer *

zn - Float array 5

/5 correct-.node - Integer
/5 CFM-.eta - Float

*wght - Float array
CFM-momentum - Float

/* Variables Returned: Node..record - Structure Array
/* Date: 10 Nov 90 Revision: 1.0 5

void CFN.last.layer(struct Node-.data *node..record(J,
iut nodes..in-.layerEJ,
jut starting.node..in.layerfl,
jut last-.layer,
float znfl,
jut correct-.node,
float eta,
float bwghtfJ
float alpha)

float buff er..2, buffer1, sum-zn, old..wght;
iut X, y. n, current-.node, previous..layer-node;
for Ux = 0; x < nodes- in-layer [last-l ay erJ; x++)

current-node = starting.node..in..layer[last-layer]+x;
buff er-.1 =(1-node-.record~current-node]->output)

* node-.record~current.nodeJ ->output;
if (current-node != correct-.node)

f or 07~ ; y < nodes-.in..laer [last..layer-1J ; y++)

previous..layer.node = starting.node-n-.layer (last..loyer-1) + y;
buffer.2 =node..record Eprevious..layer.node) ->output;
old..wght = xiode.record~current..node)->weight[previous-.layer.node);
node..record[current-node]->weight [previous.layer.nodeI +=

-otas (1-znEx] )*zn~x)
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*buff er..2 * buffer.1
* alpha
* (node..record [current.nodeJ ->weight Eprevious-.layer.nodeI

- *((wght~current-node))+previous-layer-node));

*((wghtcur-ent..node])+previous.layer.node) = old..wght;

old..gght = node..record [current-nodeJ ->sigma~current-.nodej;
node..record~currentncde->sigma~current-nodeI +=

-eta*(i-zn[x)*zn[xl* buffer-.
+ alpha *(node-.record [cuxrent-.nodeJ ->sigma Ecurrent..nodej

-*((wght[current-nodeJ)+current-node));

*( (ught [current..nodeJ)+current.node) = old..wght;

else

suin-zn = 0;
for (n =0; n < nodes..in.layerlast..layerJ; n++)

if (n ! correct.node-startingnode..in..layer last-.layer])
sum-.zn = sum..zn + zn[nJ* (1-zn~nJ);

for (y =0; y < node s-.in-.layer [last...layer-1JI; y++)

previous..layer.node =starting.node-in..layer last-.layer-iJ +y;
buffer-.2 =node-record Eprevious..layer.nodeJ ->out put;
old..ught = node..record~current.nodej->weight Eprevious..layer..node];
node-recordcurrent.nodeJ ->weight [previous..layer.node) +=

eta * buffer-.1 * buffer..2 * sum-zn
+ alpha

*(node..record~current-node) ->weight (previous-.layer-.nodeJ
-* ((ught Ecurrent..node) )+previous..layer.node));

* ((ught [current..node ) +previous-.layer.node) =old..wght;

old..ght =node-.record[current.nodeJ ->sigma~current..nodeJ;
node..record~current-.nodeJ->sigma[current.nodeI -i=

eta * buffer.1 * sum-zn
* alpha
* (node-.record Ecurrent-.nodeJ ->sigma (current.nodeJ

- *((wghtcurrent.node)curent-node));
* ((ught Ecurrent-.nodeJ )+current..node) =old-ught;

/* Function Name: CFN..rid..layer Number: 8.25 *
/* Description: This function apdates the second hidden layer *

parameter of a sigmoidal network by *
/* u(LN)+ = w(L)-anB/(N-1)sum~z(n)[l-z(n)J)y(c)[i-y(c)Jv(xc) *

-y(n) (1-y&)w(Hn)y04)E1-y(M)Jy(L) *
1* @04)+ = *(M)-anB/(N-i)sumfz(n) E-z(n)J)y(c) E1-y(c)Jw(Nc) *

/* Functions Called: None
/* Variables Passed In: Node-.record - Structure array *

1* ~nodes-.in.layer - Integer array *
/* ~starting.node.in..layer - Integer array *

current-.layer - Integer
/e an - Float array
/* correct-.node - Integer
1* CFN..eta - Float *
1* *wght - Float array *
1* CFM-.momentum - Float

/* Variables Returned: Node-.record - Structure Array *
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/* Date: 10 Nov 90 Revision: 1.0

void CFK.midlayer(struct Iode..data *node..recordO],
int nodes..in..layerO ,
int starting-node..in-layerO3,
int current-layer,
float zn[],
int correct-.node,
float eta,
float *sghtEJ,
float alpha)

jut x, y. z, n;
jut current-nuode, previous..layer.uode, last.layer.uode;
float buffer..1, buffer..2, buff er..3, buffer..4, old-ught;
for (x = 0; x < nodes-in..layer~current..layer]; x+4-)

current-n.ode = starting-n.ode..in..layer[current-.layerJ+x;
buffer.1 = ode..xecord (current-nodeJ ->output

*(1-node..record[current.nodeJ->output);

buffer-3 =0;

for (z = 0; z < nodes..in-.layer~current-.layer+lJ; z++)

last-.layer..uode =starting..ode..iulayer~curret.layer+13 + z;
if (last-layer..ode != correct-nuode)

buffer-.3 += zn~z)*(1-zn~z])
* (1-node..rocord last..layer-node2 ->output)
" node..record~last.layer.nodeJ->output
" node-.record last-.layer.uodeJ ->aeight [current..ode);

else

buffer-4 = 0;
for (ni = 0; n < nodes.iu.layer~curent-layer+i); n++)

if (nu! correct-ode-statingnode.in-.layer Ecurrent..layer+1J)
buffer-4 = buffer-4 + zn~uJ*(1-zn~nJ);

buffer..4 buffer-.4 * node-.record~correct..uode]->output
*(I -node-.rocord~correct.nodeJ ->output)
*(node-.record~correct..nodeJ->weight~current.nodeJ);

for (y =0; y < nodes..iu.layer~current..layer-iJ; y++)

previous-.layer-node = starting.uode-.in..layer~current-.layer-1J+y;
buff er.2 = ode..xecord~iprevious-layer.uodeJ ->output;
old..wght = ode-.record~t-uxxent-n.odej ->we ight Eprevious-layer-n.odej;
nodo~record~curret..odeJ->weight Eprevious..layer-node)

eta * (buffer-4-buffer-3)
* buffer.1 * buffer.2
+ alpha

*(node..record~current-n.odeJ->woight [previous..layer.uode)
- *((vght[current-n.odej)+prViouB-.layer-.node));

* ((eght [current-nodeJ )+previous..layer.utodo) = old..sght;

old-u.ght =node..record~curreut..nodoJ->sigma~current..uodeJ;
node-.rocord~current..nodoJ->sigma~current-n.ode3

eta * (buffer-4-buffer-3)
* buffer-1
+ alpha
* (node..rocord~current-.nodeJ->sigma~current-node

- *((wght~current..nodeJ)+current-.node));
*((vght (current-node) )+current-.node) =old-..ght;

G-102



/* Function Name: find..second.highest.node Number: 8.26 *l
/* Description: This function returns the incorrect node with the */
/c highest output value
/* Functions Called:None */
/* Variables Passed In: Node.record - Structure array */
l* nodes.in.layer - Integer array
/c startingnode.in.layer - Integer array */
/* last.layer - Integer
l* wnner.node - Integer */
/* *next.highest.node - Integer pointer *l
/* */

/* Variables Returned: *next.highest.node - Integer pointer
/* Date: 10 Nov 90 Revision: 1.0

void find.second.highest.node (struct Node-data *node.record[],
int nodes.in.layer[(,
int starting.node.in.layer[],
int last-layer,
int winner.node,
int *next-highest-node)

int x, current-node;
float outmax = 0;
for x = 0; x < nodesinlayer[last.layer]; x++)
{
current-node = starting.node.in.layer[last.layer+x;
if (current-node != winner-node)
{

if (node.record[current.node]->output > outmax)

outmax = node.record[current.nodeJ->output;
*next-highest.node = current.node;

}
}

}

/* Function Name: CFM.first.layer Number: 8.27
/* Description: This function updates the first hidden layer of a */
/* three layer sigmoidal network by
/* v(KL)+ = w(KL)-anB/(i-l)sum{z(n)[I-z(n))}y(c)[1-y(c)]sum{w(mc} */
/* -y(n) [1-y(n)]sum{v(mn)y(m) ri-y(m)Jv(Lm)y(L) Ei-y(L)y(K) */
/* O(KL)+ = *(KL)-anB/(N-I)sumfz(n)[i-z(n)]}y(c)[-y(c)]sum{w(mc} */
/* -y(n)[1-y(n)]sum{w(mn)y(m)[1-y(m)Jw(Lm)y(L) [-y(L) */

/* Functions Called: None ,/
/* Variables Passed In: Node.record - Structure array

nodesin.layer - Integer array
/* starting-node.in.layer - Integer array */
/* current-layer - Integer
/* zn - Float array

/c correct-node - Integer
/* CFM.eta - Float

*wght - Float array */
CFM-momentum - Float

/c total.nodes - Integer ,/

/* Variables Returned: Node.record - Structure Array
/* Date: 10 Nov 90 Revision: 1.0
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void CFK.first..layer (struct lode-.data *node..recordO3,
jut nodes..in-layer[J,
iut starting.uode..iu.layer[J,
jut current-layer,
float zuo),
jut correct-n.ode,
float eta,
float *wghtEJ,
-float alpha,
jut total-nuodes)

int x, Y, Z;
float buffer-.1, buffer-2, old..vght;
jut first-lyr.node, last-.lyr-.node, mid..lyr..node, input-lyr.node;
float output ETOTAL-NODES);

for (x = 0; x < total-nodes; x++)
output Er)= (1-node..record~xJ->output)*node..xecord~x)->output;

for (x =0; x < nodes-.in-.layer~curret-layerJ; x++)

buffer-2 =0;
first-lyr-node = starting-node..in-.layer Ecurrent..layer) + x
for (y = 0; y < nodes-nlayer~curret.layer+2); y++)

last-lyr.node =starting.node.in-.layer~current-layer+2J + y
if (last.lyr.node !=corret...node)

buffer-.. = 0;
for (z = 0; z < nodes.in-.layer~current..layer+1J; z++)

mid-Iyr-node =starting-node-.in-layer~current..layer+1J+z;
buffer-I = buffer.1

+ (output (correct.nodeJ snode-record~correct node) ->ueight Emid..lyr.node)
-output Elast-.lyr-nodeJ *node-.record Elast-.lyr-n.odeJ ->weight Emid.lyr..uodeJ)

*output [mid..lyr-.nodeJ *node..record Emid..lyr~nodeJ ->weight [first-lyr-nodeJ;

buffer-2 =buffer-2 + zn~yJ*(i-zn~yJ)* buffer-1;

for (z =0; z < nodes..in..layer~current..layer-i); z++)

input-.lyr-node =starting-node-.in-.layer~current-.layer-13 + z;
old-.wght = * C Cght Efirst.lyr-.node) )+input.lyr..uode);
* C((ghtEf irst-lyr.node) )+input-.lyr.node) =

node..xecord~first-lyr..nodeJ->weight Einput..lyr-.node);

node.recordfirst-lyr.node) ->ueightEinput-lyr-node) +=

eta * buff er..2 * output Efirst-lyr.node)
* node-record~input.lyr-node) ->output
* alpha
* (node..record Efirst.lyr.uodeJ ->ueight Einput-.lyr-n.odeJ

-old..wght);

old-.ught =* ( CghtCf irst.lyrnodeJ )+first-.lyr.node);
* C(sight (first.lyr-ode) )+:first-lyr.node) =

node..record[first-lyr.node)->sigma~first.lyr-nodeJ;
node-.record~first-.lyr-.nodej->sigma~first-lyr-node) +=

eta * buffer-.2 *output Efirst-lyr.node3
+ alpha
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* (node.record[first.lyrnode]->sigma[first.lyr.nodeJ
- old..wght);

********* ****** ** ****** ******* ******* ** ***

/* End Functions Called by CFM Remaining Lyrs */
************* ***************** *** *** *** ********

/* Function Name: findnearestneighbor Number:8.28 */
/* Description: This function finds the euclidean distance between */
/* nodes in the same layer */
/* d(ij) = sqrt{suw[w(i)-w(j)J^2} */
/* Functions Called: None */
/* Variables Passed In: Node.record - Structure array */
/, nodes.in.layer - Integer array */
/* startin.nodein.layer - Integer array */

current.node - Integer */
/* next.node - Integer */
/s current.layer - Integer */
/s *distance.between - Float array pointer */

/, Variables Returned: *distance.between - pointer */
/*-Date: 10 Nov 90 Revision: 1.0 */

void find.nearest.neighbor(struct data *data.record[I,
struct Node.data *node.record[],

int record,
int nodesin-layerO,
int starting.node.in.layer[J,
int current-layer,
int *nearest-node)

int x, y, current-node, previous.layer-node;
float buffer, distance, nearest.distance;
double exponent = 2;
calculate-layer..output(data.record,

node-record,
nodesinlayer,
record);

nearest.distance = 1000;
for (x = 0; x < nodes.in.layer[currentlayerJ; x++)
{

current-node = starting-node.in.layer[current-layer + x;
distance = 0;
for (y = 0; y < nodes-in..ayercurrent.layer-i]; y++)
{
previous.layer.node = startingnode.in-layer[currentlayer-lJ+y;
buffer = node.record[current.nodoJ->ueight[previous-layer.node]

- ode-record[previous.layernodeJ->output;
distance = distance + pow(buffor,exponent);

}

if (distance < nearest.distance)
{

nearest-distance = distance;
*nearest-node = current.node;

}

G-105



G.9 NETMATH

*************************************C C********C********

/* ModulG Name: IETMATH.C Number: 9.0

/* Description: This module contains the basic mathematical */
/* used to train the networks C/
/* */

/* Modules Called: None */
/* Functions Contained:

/* 9.1 make_identity.matrix 9.2 determine.matrix.transpose */
/* 9.3 invert_.amatrix 9.4 update-average */
/* 9.5 update.sigma 9.6 chlculate.percentage */
/* *

/* Date: 11 Nov 90 Revision: 1.0
***c********************* **C** ******* C*CC********* *******

*include "netvrble.h"
#jnclude "netfnctn.h"

/*********************************************

/* Function Name: make.identity.matrix Number: 9.1 /

/* Description: This function returns-a matrix whose elements are */
/s are I on the diagonal and 0 elsewhere
1* *I
/* Functions Called: None */

/* Variables Passed In:*N - Float array pointer
nodes.2 - Integer */

/* Variables Returned: *N - Float array pointer

/* Date: 11 Nor- 90 Rc-ision: 1.0

void mak).Identity-matrir (float N[],

int nodes.2)
{

int row, column;
for (row = 0; row < nodes.2; iow++)

for (column = C, column < nodes_2; column++)

if (row == column)
*((N[row)4+column) = 1;

else
*((NEroW])+colun) = 0;

/***********C*****C**C***************C****CC*************
/* Function Naixe: determir,B~matrix.transpose Number: 9,2 */
/* Description: This .unction retULns the tra',tpor 3 of a squaro */

/* matrix by

/* JQ' My] = MyEOxJ /

f* Functions Lallee; 1'ne */
/* Variables Passe(. 'xt: *MT - Float -,rray pointer
/5 *M - Float array pointer */

total.rbfs */
/* .

/* Variables Returned: IMT - Vloat a-ray pointer
14 Dato: 11 Nov 90 F10iv'ion: 1.0
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void determine.matrix.transpose (float *MT[]
float *ME],
int total..rbfs)

int row, column;
for (row - 0; row < total..rbfs; row )

for (column = 0; column < total..rbfs; column++)
W(MT~row])+column) = *((M~column])+row);

for (row =0; row < totrl-.rbfs; row++)
for (column =0; column < total..rbfs; column++)
*((M[row])4column) = *((MT~row])+colusm);

/* Function Name: invert.amatrix Number: 9.3 *
/* Description: This function returns inverts a square matrix *

/* via Gaussian olmination *

/s Functions Called: None S
/* Variables Passed In: *MC] - Float array pointer S

/5 *NEJ - Float array pointer 5
/* nodes..2 - Integer .

/* Variables Returned: *NC] - Float array pointer S
/* Date: 1i Nov 90 Revision: 1.0 S

void invert.a-.matrix (float .MCI,
float *N[J,
mnt nodes-.2)

float beta = 0;
float alpha =0;
mnt xx, yy, row, column;
for (row =0; row < nodes.2; row++)

beta = W((XrowJ)+row);
for (column = 0; column < nodes.2; column++)

*((M~rowj )+column) = WM(Nrow3)+coljm)/beta;
*((N[row))+column) = (N~row))+column)/beta;

for (xx = 0; xx < nodes.2; xx++)
if (xx !=row)

alpha = ((M~xxJ)+row);
for (yy =0; yy < nodes.2; yy++)

*((M[xx))+yy) = -alpha * *((M~row])+yy) + *((N~xxJ)1-yy);
*((N~xx))+yy) = -alpha * *((N~row))+yy) + *((]IxxJ)+yy);

/* Function Name: update..average Number: 9.4 *
/* Descr~ption: This function maintains a running average

avg(+) = avg(-)+(x-avg(-)JIEN(-)+lJ

/s Functions Called: None 5

/s Variables Passed In: current-.average - Float
elements - Integer
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x - Float */
*nextaverage - Float pointer

/* */

/* Variables Returned: *next.av,,zage - Float pointer */
/* Date: 11 Nov 90 Revision: 1.0

void update-average (float current.average,
int elements,
float x,
float *next-average)

float y;
*next.average = current.average + (1/(float)elements)*(x-currentaverage);

/* Function Name: update.sigma Number:9.5 */
/* Description: This function maintains a running sigma by */
/* sigma(+) = sqrt{sigma(-)-2+(I/N)[i"(1/N)] [x-avg(-))-2-sigma(-)2} *1

/, Functions Called: None /
/, Variables Passed In: current.sigma - Float

elements - Integer
/, x - Integer */
/. current.average - Float
/, *next.sigma - Float pointer */

/* Variables Returned: *next.sigma - Float pointer */
/, Date: 11 Nov 90 Revision: 1.0

void update.sigma (float current.sigma,
int elements,
float x,
float current-average,
float *next.sigma)

*next.sigma = pow((double)(current.sigma),2)+(1/(float)elements)
* ((1-1/(float)elements) * pov((double)(x-current.average),2)

- pow((double)(current.sigma),2));
*next.sigma = pou((double)(*next.sigma),.S);

/* Function Name: calculate.percentage Number: 9.6 */
/* Descriptior: This function returns the percentage value

/* Functions Called: None
/* Variables Passed In: numerator - Float */

denominator - Float
/* *percent - Float pointer */
/* *

/* Variables Returned: *per.cent - Float pointer
/* Date: 11 Nov 90 Revision: 1.0
/*******************************************************

void calculate.percentage(float numerator,
float denminator,
float *per.cent)

{
*percent = 100 * numerator/denominator;

}
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G.1O VETVRBLE

$include <stdio.h>

*include <math.h>

/* Name: NETYRDLE Number: 10.0 */

/* Description, This module contains the data structures */

/e for the nodes and the data along with */

/*. the maximum values for the global */

/e variables

/* */

/* Modules Called: None *1

/* Functions Contained: None */

/* Variables Passed In: None */

/* Variables Returned: None

/* Date: 10 Nov 90 Revision: 1.0 */

*define DIMENSION 100 /* Length of Feature Vector */

*define TRAIN.SET 200 /* Number of Training Patterns */

*define TEST.SET 200 /* Number of Test Patterns *1

#define CLASSES 20 /* Number of Classes */

#define TOTALNODES 250 /* Number of Nodes

struct data

{

float vector[DIKENSION];

int class;

int number;

struct Node.data

float weight[TOTAL.NODES];

float sigma[TOTAL.NODES];

int class;

int transferfunction;

float output;

int connect[TOTALNODES];
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